SUPPLEMENTARY MATERIAL

A Novel pH-Sensitive Method for the Quantification of Ca⁺² Ions by Complexometric Titration with Na₃HEDTA

Rahul Bhochiya,^a Pradip Kumar Mondal,^b Shah Jaimin Balkrishna^{*a}

^a Department of Chemistry, Government Commerce and Science College Dahej, Bharuch, Gujarat 392 130, India (Affiliated with Veer Narmad South Gujarat University, Surat, Gujarat, India)

^b Elettra Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza Trieste, Italy

jaiminshah02@gail.com

Contents

Experiment No.	Description of Experiment					
01	pH-Metric estimation of Ca ⁺² with Aq. Na ₂ H ₂ EDTA	05-07				
02	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock solution prepared from 37.5 mg CaCO ₃)					
03	03 Estimation of Ca ⁺² with conventional complexometric technique (Stock solution prepared from 37.5 mg CaCO ₃)					
04	Gravimetric Estimation of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution of Calcium Carbonate was prepared by digesting 37.5 mg of Calcium Carbonate	12-13				
05	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock solution prepared from 75.0 mg CaCO ₃)	13-16				
06	Estimation of Ca ⁺² with conventional complexometric technique (Stock solution prepared from 75.0 mg CaCO ₃)	17-18				
07	Gravimetric Estimation of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution of Calcium Carbonate was prepared by digesting 75.0 mg of Calcium Carbonate	18-19				
08	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock	19-23				

	solution prepared from 112.5 mg CaCO ₃)				
00	Estimation of Ca ⁺² with conventional complexometric technique				
09	(Stock solution prepared from 112.5 mg CaCO ₃)				
	Gravimetric Estimation of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution of				
10	Calcium Carbonate was prepared by digesting 112.5 mg of	24-25			
	Calcium Carbonate				
11	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock				
11	solution prepared from 46.2 mg white marble stone powder)	26-28			
	Estimation of Ca ⁺² with conventional complexometric technique				
12	(Stock solution prepared from 46.2 mg white marble stone	29-30			
	powder)				
12	Gravimetric estimation of Ca^{+2} as CaC_2O_4 .H ₂ O (Stock solution				
15	prepared from 46.2 mg white marble stone powder)	30-31			
14	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock	21.24			
	solution prepared from 49.7 mg egg shell powder)	31-34			
15	Estimation of Ca ⁺² with conventional complexometric technique	24.25			
	(Stock solution prepared from 49.7 mg egg shell powder)	34-35			
16	Gravimetric estimation of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution	35-36			
10	prepared from 49.7 mg egg shell powder)				
17	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock	26.20			
17	solution prepared from 41.7 mg sea shell powder)	36-39			
18	Estimation of Ca ⁺² with conventional complexometric technique	20.40			
10	(Stock solution prepared from 41.7 mg sea shell powder)	39-40			
10	Gravimetric estimation of Ca^{+2} as CaC_2O_4 .H ₂ O (Stock solution	40 41			
17	prepared from 41.7 mg sea shell powder)	40-41			
20	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock	41 44			
20	solution prepared from 49.7 mg calcium tablet powder)	41-44			
21	Estimation of Ca ⁺² with conventional complexometric technique	44.45			
	(Stock solution prepared from 49.7 mg calcium tablet powder)	44-45			
22	Gravimetric estimation of Ca^{+2} as CaC_2O_4 .H ₂ O (Stock solution				
	prepared from 49.7 mg calcium tablet powder)	45-46			
23	pH-Metric estimation of Ca ⁺² with Aq. Na ₃ HEDTA (Stock	46-47			
23	solution prepared from 5.0 mg CaCO ₃) [Minimum detection limit				

	determination]					
24	pH-Metric estimation of Ca ⁺² with Aq. Na ₄ EDTA	48-50				
	Volumetric titration of Ca ⁺² with Aq. Na ₃ HEDTA by using					
25	bromothymol blue as indicator (Stock solution prepared from 37.5					
	mg CaCO ₃)					
	Volumetric titration of Ca ⁺² with Aq. Na ₃ HEDTA by using					
26	bromothymol blue as indicator (Stock solution prepared from 50.0	52-54				
	mg white marble stone powder)					
	Estimation of Ca ⁺² with conventional complexometric technique					
27	(Stock solution prepared from 50.0 mg white marble stone	55-56				
	powder)					
20	Gravimetric analysis of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution					
28	prepared from 50.0 mg white marble stone powder)	56-57				
	Volumetric titration of Ca ⁺² with Aq. Na ₃ HEDTA by using					
29	bromothymol blue as indicator (Stock solution prepared from 42.0	57-59				
	mg egg shell powder)					
20	Estimation of Ca ⁺² with conventional complexometric technique					
30	(Stock solution prepared from 42.0 mg egg shell powder)	59-60				
31	Gravimetric analysis of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution	60.64				
51	prepared from 42.0 mg egg shell powder)	60-61				
	Volumetric titration of Ca ⁺² with Aq. Na ₃ HEDTA by using					
32	bromothymol blue as indicator (Stock solution prepared from 48.0	61-63				
	mg sea shell powder)					
33	Estimation of Ca ⁺² with conventional complexometric technique					
55	(Stock solution prepared from 48.0 mg sea shell powder)	63-64				
31	Gravimetric analysis of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution					
7	prepared from 48.0 mg sea shell powder)	65-66				
	Volumetric titration of Ca ⁺² with Aq. Na ₃ HEDTA by using					
35	bromothymol blue as indicator (Stock solution prepared from 40.0	66-68				
	mg calcium tablet powder)					
36	Estimation of Ca ⁺² with conventional complexometric technique	(0, (0)				
50	(Stock solution prepared from 40.0 mg calcium tablet powder)	68-69				
37	Gravimetric analysis of Ca ⁺² as CaC ₂ O ₄ .H ₂ O (Stock solution	69-70				

	prepared from 40.0 mg calcium tablet powder)	
38	pH-Metric estimation of Li^+ with Aq. Na ₃ HEDTA (Stock solution prepared from 55.0 mg Li_2CO_3)	70-72
39	pH-Metric estimation of Na ⁺ with Aq. Na ₃ HEDTA (Stock solution prepared from 29.2 mg NaCl)	72-74
40	pH-Metric estimation of K ⁺ with Aq. Na ₃ HEDTA (Stock solution prepared from 37.2 mg KCl)	74-76
41	pH-Metric estimation of $(Ca^{+2} + Mg^{+2})$ with Aq. Na ₃ HEDTA (Stock solution prepared from 37.5 mg CaCO ₃ + 29.8 mg MgCO ₃)	76-79
42	pH-Metric estimation of $(Ca^{+2} + Ba^{+2})$ with Aq. Na ₃ HEDTA (Stock solution prepared from 37.5 mg CaCO ₃ + 49.0 mg BaCO ₃)	79-82
43	pH-Metric estimation of (Ca ⁺² + Sr ⁺²) with Aq. Na ₃ HEDTA (Stock solution prepared from 37.5 mg CaCO ₃ + 50.0 mg SrCl ₂ .6H ₂ O)	82-85
	Simulated titration curve and related calculations	85-89
	Uncertainty calculation for pH-Metric analysis	90-91
	References	92

Experimental Section

Calcium Carbonate (CaCO₃), disodium salt of EDTA (Na₂H₂EDTA) and bromothymol blue indicator solution were purchased from Loba Chemie. Hydrochloric acid (HCl) and Sodium Hydroxide (NaOH) were purchased from Finar. Eriochrome Black -T (EBT) indicator was purchased from Finar and freshly prepared just before the experiment by dissolving 0.4 g EBT in 10.0 mL ethanol and 30.0 mL triethanolamine. Buffer solution having pH 10 was prepared by mixing 68.0 g NH₄Cl, 568.0 mL liquor ammonia and 364.0 mL water. Aqueous solutions in all the experiments were prepared by using Bisleri packaged drinking water. Marble stone, egg shells and sea shells were thoroughly washed, dried and grinded to have homogeneous powder. Calcium tablets (Caldison-500, Unison Pharmaceuticals Pvt. Ltd) were purchased from local market (Batch No. 220910770, Manufacturing Date: Sept 2022, Expiry Date: August 2024). All the pH-Metric experiments were conducted on digital pH meter (Brand: Digitronics, Model: 213) having pH range of 0-14 and resolution 0.01 unit of pH. Combined glass electrode Digitronics CE24 was used. The inner reference electrode is Ag/AgCl electrode in 3 mol/L KCl solution with porous liquid junction. pH electrode was calibrated with the use of buffer solutions having pH 4.00, pH 7.00 and pH 9.00 before each new experiment. All the pH-Metric titrations and volumetric analysis with bromothymol blue were performed with three sets of solutions and three experiments were performed with each set of solution in order to check the reproducibility of results.

pH-Metric Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₂H₂EDTA (pH 4.4) as titrant 0.0375 g CaCO₃ was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (Solution A). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.5. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (Solution B). 0.01M

 Na_2H_2EDTA solution was filled in 25.0 mL burette. Now, 0.5 mL 0.01M Na_2H_2EDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na_2H_2EDTA from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Sr. No.	Na ₂ H ₂ EDTA (in mL)	рН
1	0.0	7.05
2	0.5	6.49
3	1.0	5.95
4	1.5	5.20
5	2.0	4.52
6	2.5	4.32
7	3.0	4.19
8	3.5	4.11
9	4.0	4.03
10	4.5	4.00
11	5.0	3.98
12	5.5	3.95
13	6.0	3.92
14	6.5	3.90
15	7.0	3.89
16	7.5	3.87

Table 1:	pH-Metric	Titration	Readings	between Ac	. Solutions o	of Ca ⁺² an	d Na ₂ H ₂ EDTA

17	8.0	3.84
18	8.5	3.82
19	9.0	3.80
20	9.5	3.79
21	10.0	3.77
22	10.5	3.75
23	11.0	3.74
24	11.5	3.73
25	12.0	3.72

Figure 1: Effect of Aq.Na₂H₂EDTA Addition on pH of Ca⁺² Solution

Observations: Initially, decrease in pH was observed with the progress of titration, but even after passing the stage of equivalence point, a constant small decrease in pH was observed and hence we could not find out the exact & sharp equivalence point. It may be because of weak acidic nature of Aq. Na_2H_2EDTA solution.

pH-Metric Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of CaCO₃ was prepared by dissolving 37.5 mg of CaCO₃)

0.0375 g CaCO₃ was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.5. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0.0	7.06
2	0.5	6.99
3	1.0	6.94
4	1.5	6.86
5	2.0	6.79
6	2.5	6.73
7	3.0	6.68

Table 2:	pH-Metric	Titration	Readings	between A	a. Solutions	of Ca ⁺²	and Na ₃ HEDTA
	P					u u u	

8	3.5	6.62
9	4.0	6.56
10	4.5	6.50
11	5.0	6.44
12	5.5	6.39
13	6.0	6.34
14	6.5	6.31
15	7.0	6.28
16	7.5	6.24
17	8.0	7.15
18	8.5	7.79
19	9.0	8.39
20	9.5	9.39
21	10.0	9.70
22	10.5	10.02
23	11.0	10.12
24	11.5	10.28
25	12.0	10.34
	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8 3.5 9 4.0 10 4.5 11 5.0 12 5.5 13 6.0 14 6.5 15 7.0 16 7.5 17 8.0 18 8.5 19 9.0 20 9.5 21 10.0 22 10.5 23 11.0 24 11.5 25 12.0

Figure 2: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.06 to 6.24 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.24 to 7.15 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 7.79, 8.39 and 9.39. <u>So sharp equivalence point for the titration was observed at 7.5 mL.</u>

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution A contains (7.5 x 5) = 37.5 mg of CaCO ₃ (Theoretical Amount)							
Experimental	Calculations:						
1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²		
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²		
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²		
7.5 mL	0.01M Na ₃ HEDTA	≡	7.5 mg CaCO ₃				
Solution B co	Solution B contains 7.5 mg of CaCO ₃ (Experimental Amount)						

Solution A contains (7.5 x 5) = 37.5 mg of CaCO₃ (Experimental Amount)

Theoretical and experimental amount for the estimation of CaCO₃ matches well.

3) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of CaCO₃ was prepared by dissolving 37.5 mg of CaCO₃)

0.0375 g CaCO₃ was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 3: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	7.8	7.8	
2	0.0	7.8	7.8	7.8
3	0.0	7.8	7.8	

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution A contains (7.5 x 5) = 37.5 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
7.8 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	7.8 mg CaCO ₃		

Solution B contains 7.8 mg of CaCO₃ (Experimental Amount)

Solution A contains (7.8 x 5) = 39.0 mg of CaCO₃ (Experimental Amount)

4) Gravimetric estimation of Calcium Carbonate (Stock solution of Calcium Carbonate was prepared by digesting 37.5 mg of Calcium Carbonate Powder with 1.0 mL Con. HCl)¹

37.5 mg of calcium carbonate powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Papar (in g)	Paper + Precipitates)	Precipitates	Reading
INO.	raper (mg)	(in g)	(in g)	(in mg)
01	1.1130 g	1.1676	0.0546	
02	1.1271 g	1.1817	0.0546	54.6
03	1.0864 g	1.1415	0.0551	

Calculations:

1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$ 100.0 g $CaCO_3 \equiv 146.08$ g $CaC_2O_4.H_2O$ 0.0375 g $CaCO_3 \equiv 0.0547$ g $CaC_2O_4.H_2O$ <u>Therefore, for obtained 54.6 mg $CaC_2O_4.H_2O$, the equivalent amount of</u>

<u>CaCO₃ is 37.4 mg</u>

5) pH-Metric Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of CaCO₃ was prepared by dissolving 75.0 mg of CaCO₃)

0.075 g CaCO₃ was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.4. pH of this solution was adjusted to 7 by adding 4.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was

measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 20.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 4: pH-Metric	Titration R	Readings between	Aq. Solutions of	Ca ⁺² and Na ₃ HEDTA
1		8	1	0

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.07
2	0.5	6.90
3	1.0	6.73
4	1.5	6.66
5	2.0	6.59
6	2.5	6.51
7	3.0	6.44
8	3.5	6.39
9	4.0	6.34
10	4.5	6.30
11	5.0	6.26
12	5.5	6.22
13	6.0	6.18
14	6.5	6.13
15	7.0	6.08
16	7.5	6.05
17	8.0	6.01

10	â -	
18	8.5	5.96
19	9.0	5.92
20	9.5	5.89
21	10.0	5.86
22	10.5	5.83
23	11.0	5.80
24	11.5	5.76
25	12.0	5.71
26	12.5	5.68
27	13.0	5.65
28	13.5	5.62
29	14.0	5.60
30	14.5	5.58
30 31	14.5 15.0	5.58 5.56
30 31 32	14.5 15.0 15.5	5.58 5.56 5.86
30 31 32 33	14.5 15.0 15.5 16.0	5.58 5.56 5.86 6.12
30 31 32 33 34	14.5 15.0 15.5 16.0 16.5	5.58 5.56 5.86 6.12 6.31
30 31 32 33 34 35	14.5 15.0 15.5 16.0 16.5 17.0	5.58 5.56 5.86 6.12 6.31 6.57
30 31 32 33 34 35 36	14.5 15.0 15.5 16.0 16.5 17.0 17.5	5.58 5.56 5.86 6.12 6.31 6.57 6.84
30 31 32 33 34 35 36 37	14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0	5.58 5.56 5.86 6.12 6.31 6.57 6.84 7.09
30 31 32 33 34 35 36 37 38	14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5	5.58 5.56 5.86 6.12 6.31 6.57 6.84 7.09 7.34
30 31 32 33 34 35 36 37 38 39	14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0	5.58 5.56 5.86 6.12 6.31 6.57 6.84 7.09 7.34 7.72
30 31 32 33 34 35 36 37 38 39 40	14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5	5.58 5.56 5.86 6.12 6.31 6.57 6.84 7.09 7.34 7.72 8.10

Figure 3: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.07 to 5.56 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 5.56 to 5.86 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 6.12, 6.31 and 6.57. <u>So sharp equivalence point for the titration was observed at 15.0 mL.</u>

Theoretical Calculations:

Solution B contains 15.0 mg of CaCO₃ (Theoretical Amount)

Solution A contains (15.0 x 5) = 75.0 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	=	0.4 g Ca ⁺²
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
15.0 mL	0.01M Na ₃ HEDTA	≡	15.0 mg CaCO₃		

Solution B contains 15.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (15.0 x 5) = 75.0 mg of CaCO₃ (Experimental Amount)

6) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of CaCO₃ was prepared by dissolving 75.0 mg of CaCO₃)

0.075 g CaCO₃ was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 5: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	15.4	15.4	
2	0.0	15.4	15.4	15.4
3	0.0	15.4	15.4	

Theoretical Calculations:

Solution B contains 15.0 mg of CaCO₃ (Theoretical Amount)

Solution A contains (15.0 x 5) = 75.0 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²		
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²		
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²		
15.4 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	15.4 mg CaCO ₃				
Solution B contains 15.4 mg of CaCO ₃ (Experimental Amount)						

Solution A contains (15.4 x 5) = 77.0 mg of CaCO₃ (Experimental Amount)

7) Gravimetric Estimation of Calcium Carbonate (Stock solution of Calcium Carbonate was prepared by digesting 75.0 mg of Calcium Carbonate Powder with 2.0 mL Con. HCl)

75.0 mg of calcium carbonate powder was taken in 100.0 mL beaker. To this, 2.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 7.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Papar (in g)	Paper + Precipitates)	Precipitates	Reading
INO.	raper (mg)	(in g)	(in g)	(in mg)
01	1.0683 g	1.1772	0.1089	
02	1.0878 g	1.1972	0.1094	108.9
03	1.1292 g	1.2381	0.1089	

Calculations:

- 1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$
- $100.0 \text{ g CaCO}_3 \equiv 146.08 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$
- $0.075 \text{ g CaCO}_3 \equiv 0.1095 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$

<u>Therefore, for obtained 108.9 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 74.6 mg</u>

8) pH-Metric Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of CaCO₃ was prepared by dissolving 112.5 mg of CaCO₃)

0.112 g CaCO₃ was dissolved in 0.3 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 6.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 25.0 mL and pH reading

was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.01
2	0.5	6.97
3	1.0	6.93
4	1.5	6.92
5	2.0	6.91
6	2.5	6.90
7	3.0	6.89
8	3.5	6.88
9	4.0	6.87
10	4.5	6.86
11	5.0	6.85
12	5.5	6.84
13	6.0	6.83
14	6.5	6.82
15	7.0	6.81
16	7.5	6.80
17	8.0	6.79
18	8.5	6.78
19	9.0	6.77

Table 6: pH-Metric Titration Readings between Aq. Solutions of Ca⁺² and Na₃HEDTA

20	9.5	6.75
21	10.0	6.74
22	10.5	6.73
23	11.0	6.72
24	11.5	6.70
25	12.0	6.68
26	12.5	6.67
27	13.0	6.66
28	13.5	6.65
29	14.0	6.64
30	14.5	6.61
31	15.0	6.58
32	15.5	6.56
33	16.0	6.54
34	16.5	6.52
35	17.0	6.49
36	17.5	6.46
37	18.0	6.44
38	18.5	6.42
39	19.0	6.41
40	19.5	6.39
41	20.0	6.37
42	20.5	6.35
43	21.0	6.33

44	21.5	6.31
45	22.0	6.29
46	22.5	6.27
47	23.0	6.40
48	23.5	6.65
49	24.0	6.82
50	24.5	6.95
51	25.0	7.17

Figure 4: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.01 to 6.27 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.27 to 6.40 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 6.65, 6.82 and 6.95. <u>So sharp equivalence point for the titration was observed at 22.5 mL</u>

Theoretical Calculations:

Solution B contains 22.5 mg of CaCO₃ (Theoretical Amount)

Solution A contains (22.5 x 5) = 112.5 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
0.01M Na ₃ HEDTA	≡	22.5 mg CaCO ₃		
	1M Na ₃ HEDTA 0.01M Na ₃ HEDTA 0.01M Na ₃ HEDTA 0.01M Na ₃ HEDTA	$1M Na_3HEDTA$ \equiv $0.01M Na_3HEDTA$ \equiv $0.01M Na_3HEDTA$ \equiv $0.01M Na_3HEDTA$ \equiv	$1M Na_3HEDTA$ \equiv 100.0 g CaCO_3 $0.01M Na_3HEDTA$ \equiv 1.0 g CaCO_3 $0.01M Na_3HEDTA$ \equiv 1.0 mg CaCO_3 $0.01M Na_3HEDTA$ \equiv 22.5 mg CaCO_3	$1M Na_3HEDTA$ \equiv $100.0 g CaCO_3$ \equiv $0.01M Na_3HEDTA$ \equiv $1.0 g CaCO_3$ \equiv $0.01M Na_3HEDTA$ \equiv $1.0 mg CaCO_3$ \equiv $0.01M Na_3HEDTA$ \equiv $22.5 mg CaCO_3$

Solution B contains 22.5 mg of CaCO₃ (Experimental Amount)

Solution A contains (22.5 x 5) = 112.5 mg of CaCO₃ (Experimental Amount)

Theoretical and experimental amount for the estimation of CaCO₃ matches well.

 9) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of CaCO₃ was prepared by dissolving 112.5 mg of CaCO₃)

0.1125 g CaCO₃ was dissolved in 0.3 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 7: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	23.0	23.0	
2	0.0	23.0	23.0	23.0
3	0.0	22.9	22.9	

Theoretical Calculations:

Solution B contains 22.5 mg of CaCO₃ (Theoretical Amount)

Solution A contains (22.5 x 5) = 112.5 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
23.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	23.0 mg CaCO ₃		

Solution B contains 23.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (23.0 x 5) = 115.0 mg of CaCO₃ (Experimental Amount)

10) Gravimetric Estimation of Calcium Carbonate (Stock solution of Calcium Carbonate was prepared by digesting 112.5 mg of Calcium Carbonate Powder with 3.0 mL Con. HCl)

112.5 mg of calcium carbonate powder was taken in 100.0 mL beaker. To this, 3.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 10.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment No.	Weight of Filter Paper (in g)	Weight of (Filter Paper + Precipitates) (in g)	Weight of Precipitates (in g)	Concordant Reading (in mg)
01	1.1282 g	1.2933	0.1651	
02	1.0891 g	1.2536	0.1645	164.5
03	1.0664 g	1.2309	0.1645	

Calculations:

1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$

 $100.0 \text{ g CaCO}_3 \equiv 146.08 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$

 $0.1125 \text{ g CaCO}_3 \equiv 0.1643 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$

Therefore, for obtained 164.5 mg CaC₂O₄.H₂O, the equivalent amount of

<u>CaCO₃ is 112.6 mg</u>

11) pH-Metric Estimation of Calcium in White Marble Stone as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of White Marble Stone was prepared by dissolving 46.2 mg of Dry White Marble Stone Powder)

0.0462 g white marble stone powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.4. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution.

Table 8: Readings of pH-Metric Titration between Aq. Solutions of Ca+2 (present inWhite Marble Stone) and Na3HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0.0	7.02
2	0.5	6.98
3	1.0	6.96
4	1.5	6.90
5	2.0	6.84
6	2.5	6.79

7	3.0	6.75
8	3.5	6.69
9	4.0	6.62
10	4.5	6.59
11	5.0	6.56
12	5.5	6.51
13	6.0	6.46
14	6.5	6.42
15	7.0	6.38
16	7.5	6.33
17	8.0	6.28
18	8.5	6.24
19	9.0	6.18
20	9.5	7.13
21	10.0	7.74
22	10.5	8.45
23	11.0	9.27
24	11.5	9.68
25	12.0	10.24

Figure 5: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.02 to 6.18 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.18 to 7.13 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 7.74, 8.45 and 9.27. <u>So sharp equivalence point for the titration was observed at 9.0 mL</u>

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
9.0 mL	0.01M Na ₃ HEDTA	≡	9.0 mg CaCO ₃		

Solution B contains 9.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (9.0 x 5) = 45.0 mg of CaCO₃ (Experimental Amount)

12) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of Marble Stone was prepared by dissolving 46.2 mg of Dry White Marble Stone Powder)

0.0462 g white marble stone powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 9: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.4	9.4	
2	0.0	9.4	9.4	9.4
3	0.0	9.4	9.4	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
9.4 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	9.4 mg CaCO ₃		

Solution B contains 9.4 mg of CaCO₃ (Experimental Amount)

Solution A contains (9.4 x 5) = 47.0 mg of CaCO₃ (Experimental Amount)

13) Gravimetric Estimation of Calcium in White Marble Stone as Calcium Carbonate (CaCO₃) (Stock solution of White Marble Stone was prepared by digesting 46.2 mg of Dry White Marble Stone Powder with 1.0 mL Con. HCl)

46.2 mg of dry white marble stone powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Paper (in g)	Paper + Precipitates)	Precipitates	Reading
110.	r aper (m g)	(in g)	(in g)	(in mg)
01	1.0723 g	1.1394	0.0671	
	-			
02	1.1091 g	1.1763	0.0672	67.1
	-			
03	1.0774 g	1.1445	0.0671	
	C			

Calculations:

 $1.0 \text{ mole of } CaCO_3 \equiv 1.0 \text{ mole of } CaC_2O_4.H_2O$ $100.0 \text{ g } CaCO_3 \equiv 146.08 \text{ g } CaC_2O_4.H_2O$ $0.0462 \text{ g } CaCO_3 \equiv 0.0675 \text{ g } CaC_2O_4.H_2O$

<u>Therefore, for obtained 67.1 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 45.9 mg</u>

14) pH-Metric Estimation of Calcium in Egg Shell as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Egg Shell was prepared by dissolving 49.7 mg of Dry Egg Shell Powder)

0.0497 g dry egg shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.3. pH of this solution was adjusted to 7 by adding 2.2 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 13.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 10: Readings of pH-Metric Titration between Aq. Solutions of Ca⁺² (present in Egg Shell) and Na₃HEDTA

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.05
2	0.5	7.0
3	1.0	6.96
4	1.5	6.88
5	2.0	6.82
6	2.5	6.76
7	3.0	6.70
8	3.5	6.63
9	4.0	6.57
10	4.5	6.54
11	5.0	6.50
12	5.5	6.45
13	6.0	6.41
14	6.5	6.39
15	7.0	6.36
16	7.5	6.32
17	8.0	6.28
18	8.5	6.25
19	9.0	6.22
20	9.5	6.16

21	10.0	6.10
22	10.5	6.47
23	11.0	6.95
24	11.5	7.53
25	12.0	8.40
26	12.5	9.20
27	13.0	9.73

Figure 6: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.05 to 6.10 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.10 to 6.47 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 6.95, 7.53 and 8.40. <u>So sharp equivalence point for the titration was observed at 10.0 mL</u>

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	=	0.4 g Ca ⁺²
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.0 mL	0.01M Na ₃ HEDTA	≡	10.0 mg CaCO ₃		

Solution B contains 10.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.0 x 5) = 50.0 mg of CaCO₃ (Experimental Amount)

15) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of Egg Shell was prepared by dissolving 49.7 mg of Dry Egg Shell Powder)

0.0497 g dry egg shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 11: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.2	10.2	10.2
2	0.0	10.2	10.2	

3	0.0	10.2	10.2	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.2 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	10.2 mg CaCO ₃		

Solution B contains 10.2 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.2 x 5) = 51.0 mg of CaCO₃ (Experimental Amount)

16) Gravimetric Estimation of Calcium in Egg-Shell as Calcium Carbonate (CaCO₃) (Stock solution of Egg-Shell was prepared by digesting 49.7 mg of Dry Egg-Shell Powder with 1.0 mL Con. HCl)

49.7 mg of dry Egg-Shell powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Papar (in g)	Paper + Precipitates)	Precipitates	Reading
INO.	raper (mg)	(in g)	(in g)	(in mg)
01	1.1385 g	1.2106	0.0721	
02	1.1428 g	1.2149	0.0721	72.1
03	1.0882 g	1.1606	0.0724	

Calculations:

 $1.0 \text{ mole of } CaCO_3 \equiv 1.0 \text{ mole of } CaC_2O_4.H_2O$ $100.0 \text{ g } CaCO_3 \equiv 146.08 \text{ g } CaC_2O_4.H_2O$ $0.0497 \text{ g } CaCO_3 \equiv 0.0726 \text{ g } CaC_2O_4.H_2O$

Therefore, for obtained 72.1 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 49.3 mg

17) pH-Metric Estimation of Calcium in Sea Shell as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Sea Shell was prepared by dissolving 41.7 mg of Dry Sea Shell Powder) 0.0417 g dry sea shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (Solution A). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (Solution B). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 12.0 mL and pH reading
was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 12: Readings of pH-Metric Titration between Aq. Solutions of Ca⁺² (present in Sea Shell Powder) and Na₃HEDTA

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.05
2	0.5	6.99
3	1.0	6.94
4	1.5	6.88
5	2.0	6.82
6	2.5	6.77
7	3.0	6.73
8	3.5	6.69
9	4.0	6.65
10	4.5	6.61
11	5.0	6.58
12	5.5	6.52
13	6.0	6.45
14	6.5	6.39
15	7.0	6.34
16	7.5	6.29
17	8.0	6.24
18	8.5	6.16

19	9.0	6.55
20	9.5	7.13
21	10.0	7.66
22	10.5	8.49
23	11.0	9.13
24	11.5	9.47
25	12.0	9.85

Figure 7: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H⁺ ion was taking place and hence decrease in pH from 7.05 to 6.16 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.16 to 6.55 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 7.13, 7.66 and 8.49. <u>So sharp equivalence point for the titration was observed at 8.5 mL</u>

Experimental Calculations:

1000.0 mL 1M Na₃HEDTA = 100.0 g CaCO₃ = 40.0 g Ca⁺²

1000.0 mL	0.01M Na₃HEDTA \equiv	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	0.01M Na₃HEDTA \equiv	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
8.5 mL	$0.01M \text{ Na}_{3}\text{HEDTA} \equiv$	8.5 mg CaCO₃		

Solution B contains 8.5 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.5 x 5) = 42.5 mg of CaCO₃ (Experimental Amount)

18) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of Sea Shell was prepared by dissolving 41.7 mg of Dry Sea Shell Powder)

0.0417 g dry sea shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 13: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.7	8.7	
2	0.0	8.7	8.7	8.7
3	0.0	8.7	8.7	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
8.7 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	8.7 mg CaCO ₃		

Solution B contains 8.7 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.7 x 5) = 43.5 mg of CaCO₃ (Experimental Amount)

19) Gravimetric Estimation of Calcium in Sea-Shell as Calcium Carbonate (CaCO₃) (Stock solution of Sea-Shell was prepared by digesting 41.7 mg of Dry Sea-Shell Powder with 1.0 mL Con. HCl)

41.7 mg of dry Sea-Shell powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No.	Paper (in g)	Paper + Precipitates)	Precipitates	Reading

		(in g)	(in g)	(in mg)
01	1.0662	1.1279	0.0617	
02	1.0743	1.1363	0.0620	61.7
03	1.0545	1.1162	0.0617	

Calculations:

1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$ 100.0 g $CaCO_3 \equiv 146.08$ g $CaC_2O_4.H_2O$ 0.0417 g $CaCO_3 \equiv 0.0609$ g $CaC_2O_4.H_2O$

Therefore, for obtained 61.7 mg $CaC_2O_4.H_2O$, the equivalent amount of CaCO₃ is 42.2 mg

20) pH-Metric Estimation of Calcium in Tablet as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Calcium Tablet was prepared by dissolving 50.0 mg of Dry Calcium Tablet Powder)

0.050 g dry calcium tablet powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 2.5 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 12.0 mL and pH reading

was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 14: Readings of pH-Metric Titration between Aq. Solutions of Ca⁺² (present in Calcium Tablet) and Na₃HEDTA

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.06
2	0.5	7.0
3	1.0	6.96
4	1.5	6.92
5	2.0	6.89
6	2.5	6.83
7	3.0	6.78
8	3.5	6.72
9	4.0	6.66
10	4.5	6.60
11	5.0	6.55
12	5.5	6.48
13	6.0	6.42
14	6.5	6.35
15	7.0	6.29
16	7.5	6.24
17	8.0	6.19
18	8.5	6.13

19	9.0	6.08
20	9.5	6.03
21	10.0	5.98
22	10.5	6.31
23	11.0	6.72
24	11.5	7.45
25	12.0	7.84
26	12.5	8.24
27	13.0	9.31

Figure 8: Effect of Aq.Na₃HEDTA Addition on pH of Ca⁺² Solution

Observations: During this titration, formation of Ca-EDTA complex and release of one H^+ ion was taking place and hence decrease in pH from 7.06 to 5.98 was observed. At equivalence point, release of H^+ ion was stopped and sharp increase in pH was observed from 5.98 to 6.31 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 6.72, 7.45 and 7.84. <u>So sharp equivalence point for the titration was observed at 10.0 mL</u>

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.0 mL	0.01M Na ₃ HEDTA	≡	10.0 mg CaCO₃		

Solution B contains 10.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.0 x 5) = 50.0 mg of CaCO₃ (Experimental Amount)

21) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of Calcium Tablet was prepared by dissolving 50.0 mg of Dry Calcium Tablet Powder)

0.050 g dry calcium tablet powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 15: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.4	10.4	
2	0.0	10.4	10.4	10.4
3	0.0	10.4	10.4	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	=	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.4 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	10.4 mg CaCO ₃		

Solution B contains 10.4 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.4 x 5) = 52.0 mg of CaCO₃ (Experimental Amount)

22) Gravimetric Estimation of Calcium in Calcium Tablet as Calcium Carbonate (CaCO₃) (Stock solution of Calcium Tablet was prepared by digesting 50.0 mg of Dry Calcium Tablet Powder with 1.0 mL Con. HCl)

50.0 mg of dry Calcium Tablet powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates

were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter Weight of (Filter		Weight of	Concordant
No	Paper (in g)	Paper + Precipitates)	Precipitates	Reading
110.	r aper (m g)	(in g)	(in g)	(in mg)
01	1.1201	1.1932	0.0731	
02	1.0983	1.1707	0.0724	0.0724
03	1.0654	1.1378	0.0724	1

Calculations:

- 1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$
- $100.0 \text{ g CaCO}_3 \equiv 146.08 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$
- $0.0500 \text{ g CaCO}_3 \equiv 0.0730 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$

Therefore, for obtained 72.4 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 49.5 mg

23) pH-Metric Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Ca⁺² was prepared by dissolving 5.0 mg of CaCO₃ in 250.0 mL water)

0.005g CaCO₃ was dissolved in minimum amount of conc. HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0

mL beaker. Then, pH electrode was inserted to this solution and pH value was measured and adjusted to 7.0 by adding 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 2.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 16: Readings of pH-Metric Titration between Aq. Solutions of Ca⁺² (present in Calcium Tablet) and Na₃HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0.0	7.03
2	0.5	6.82
3	1.0	6.71
4	1.5	7.33
5	2.0	9.11
6	2.5	9.64

Observations: During this titration, formation of Ca-EDTA complex and release of one H^+ ion was taking place and hence decrease in pH from 7.03 to 6.71 was observed. At equivalence point, release of H^+ ion was stopped and sharp increase in pH was observed from 6.71 to 7.33 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 9.11 and 9.64. <u>So sharp equivalence point for the titration was observed at 1.0 mL</u>

Experimental Calculations:

1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
	1M Na ₃ HEDTA 0.01M Na ₃ HEDTA 0.01M Na ₃ HEDTA	$1M Na_3HEDTA$ \equiv $0.01M Na_3HEDTA$ \equiv $0.01M Na_3HEDTA$ \equiv	$1M Na_3HEDTA \equiv 100.0 g CaCO_3$ $0.01M Na_3HEDTA \equiv 1.0 g CaCO_3$ $0.01M Na_3HEDTA \equiv 1.0 mg CaCO_3$	$1M Na_3HEDTA$ \equiv $100.0 g CaCO_3$ \equiv $0.01M Na_3HEDTA$ \equiv $1.0 g CaCO_3$ \equiv $0.01M Na_3HEDTA$ \equiv $1.0 mg CaCO_3$ \equiv

Solution B contains 1.0 mg of CaCO₃ (Experimental Amount)

Solution A contains (1.0 x 5) = 5.0 mg of CaCO₃ (Experimental Amount)

24) pH-Metric Titration of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand and Aq. Solution of Na₄EDTA (pH 12) as titrant (Stock solution of Ca⁺² was prepared by dissolving 37.7 mg of CaCO₃ in 250.0 mL water)

0.0377 g CaCO₃ was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.4. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₄EDTA (pH 12) was prepared by mixing 0.01M Na₂H₂EDTA and 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₄EDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₄EDTA from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

	Volume of 0.01M	
Sr. No.	Na ₃ HEDTA (in mL)	рН
1	0.0	7.04
2	0.5	7.69
3	1.0	8.25
4	1.5	8.63
5	2.0	9.03
6	2.5	9.18
7	3.0	9.40
8	3.5	9.52
9	4.0	9.66
10	4.5	9.78
11	5.0	9.89
12	5.5	9.98
13	6.0	10.08
14	6.5	10.19
15	7.0	10.24
16	7.5	10.30
17	8.0	10.37
18	8.5	10.43
19	9.0	10.49
20	9.5	10.53
21	10.0	10.59

Table 17: pH-Metric Titration Readings between Aq. Solutions of Ca⁺² and Na₄EDTA

22	10.5	10.63
23	11.0	10.67
24	11.5	10.72
25	12.0	10.76

Figure 9: Effect of Aq.Na₄EDTA Addition on pH of Ca⁺² Solution

During this titration, release of one H⁺ ion was not taking place and hence decrease in pH was not observed. However, continuous increase in pH was observed. No sharp equivalence point was observed.

25) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand, Aq. Solution of Na₃HEDTA (pH 11) as titrant and bromothymol blue

as indicator (Stock solution of CaCO₃ was prepared by dissolving 37.5 mg of CaCO₃)

0.0375 g CaCO₃ was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.5. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). 50.0 mL of solution B was transferred to 250.0 mL conical flask. To this, 3-4 drops of bromothymol

blue indicator was added. Colour of solution was colourless to pale green. Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, titration was performed by drop wise addition of burette solution to the conical flask. With progress of titration, pH of solution decreases and colour of solution changed from light green to yellow. After surpassing the equivalence point, further addition of Na₃HEDTA solution caused sharp increase in the pH of solution i.e pH \geq 7.5 and its colour changed from yellow to intense blue which was detected as end point of the titration. This experiment was repeated three times. Obtained observations are listed below.

Table 18A (Solution Set-I): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.3	8.3	
2	0.0	8.3	8.3	8.3
3	0.0	8.3	8.3	

 Table 18B (Solution Set-II): Readings of complexometric titration between Aq. Solutions

 of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.3	8.3	
2	0.0	8.4	8.4	8.3
3	0.0	8.3	8.3	

Table 18C (Solution Set-III): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.5	8.5	
2	0.0	8.3	8.3	8.3
3	0.0	8.3	8.3	

Relative Standard Deviation of Above Nine Readings: 0.85%

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution A contains (7.5 x 5) = 37.5 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	=	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
8.3 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	8.3 mg CaCO ₃		

Solution B contains 8.3 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.3 x 5) = 41.5 mg of CaCO₃ (Experimental Amount)

26) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand, Aq. Solution of Na₃HEDTA (pH 11) as titrant and bromothymol blue as indicator (Stock solution of CaCO₃ was prepared by dissolving 50.0 mg of Marble Stone Powder)

0.050 g marble stone powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well

to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.4. pH of this solution was adjusted to 7 by adding 2.2 mL 0.33 M NaOH solution (**Solution B**). 50.0 mL of solution B was transferred to 250.0 mL conical flask. To this, 3-4 drops of bromothymol blue indicator was added. Colour of solution was colourless to pale green. Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, titration was performed by drop wise addition of burette solution to the conical flask. With progress of titration, pH of solution decreases and colour of solution changed from light green to yellow. After surpassing the equivalence point, further addition of Na₃HEDTA solution caused sharp increase in the pH of solution i.e pH≥7.5 and its colour changed from yellow to intense blue which was detected as end point of the titration. This experiment was repeated three times. Obtained observations are listed below.

Table 19A (Solution Set-I): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.7	10.7	
2	0.0	10.7	10.7	10.7
3	0.0	10.7	10.7	

Table 19B (Solution Set-II): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.8	10.8	
2	0.0	10.7	10.7	10.7
3	0.0	10.7	10.7	

Table 19C (Solution Set-III): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.7	10.7	
2	0.0	10.8	10.8	10.7
3	0.0	10.7	10.7	

Relative Standard Deviation of Above Nine Readings: 0.41%

Theoretical Calculations:

Solution B contains 10.0 mg of CaCO₃ (Theoretical Amount)

Solution A contains (10.0 x 5) = 50.0 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.7 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	10.7 mg CaCO ₃		

Solution B contains 10.7 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.7 x 5) = 53.5 mg of CaCO₃ (Experimental Amount)

27) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric Titration Method (Stock solution of White Marble Stone was prepared by dissolving 50.0 mg of Dry White Marble Stone Powder)

0.050 g marble stone powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 20: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.2	10.2	
2	0.0	10.2	10.2	10.2
3	0.0	10.2	10.2	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.2 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	10.2 mg CaCO₃		

Solution B contains 10.2 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.2 x 5) = 51.0 mg of CaCO₃ (Experimental Amount)

28) Gravimetric Estimation of Calcium in White Marble Stone as Calcium Carbonate (CaCO₃) (Stock solution of White Marble Stone was prepared by digesting 50.0 mg of Dry White Marble Stone Powder with 1.0 mL Con. HCl)

50.0 mg of dry white marble stone powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment No.	Weight of Filter Paper (in g)	Weight of (Filter Paper + Precipitates) (in g)	Weight of Precipitates (in g)	Concordant Reading (in mg)
01	1.1192 g	1.1916	0.0724	
02	1.0884 g	1.1613	0.0729	0.0724
03	1.0906 g	1.1630	0.0724	

Calculations:

1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$ 100.0 g $CaCO_3 \equiv 146.08$ g $CaC_2O_4.H_2O$ 0.050 g $CaCO_3 \equiv 0.0730$ g $CaC_2O_4.H_2O$

<u>Therefore, for obtained 72.4 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 49.6 mg</u>

29) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand, Aq. Solution of Na₃HEDTA (pH 11) as titrant and bromothymol blue as indicator (Stock solution of CaCO₃ was prepared by dissolving 42.0 mg of Egg Shell Powder)

0.0420 g egg shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). 50.0 mL of solution B was transferred to 250.0 mL conical flask. To this, 3-4 drops of bromothymol blue indicator was added. Colour of solution was colourless to pale green. Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, titration was performed by drop wise addition of burette solution to the conical flask. With progress of titration, pH of solution decreases and colour of solution changed from light green to yellow. After surpassing the equivalence point, further addition of Na₃HEDTA solution caused sharp increase in the pH of solution i.e pH≥7.5 and its colour changed from

yellow to intense blue which was detected as end point of the titration. This experiment was repeated three times. Obtained observations are listed below.

Table 21A (Solution Set-I): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.2	9.2	
2	0.0	9.2	9.2	9.2
3	0.0	9.2	9.2	

Table 21B (Solution Set-II): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.2	9.2	
2	0.0	9.2	9.2	9.2
3	0.0	9.4	9.4	

Table 21C (Solution Set-III): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.2	9.2	
2	0.0	9.4	9.4	9.2
3	0.0	9.2	9.2	

Relative Standard Deviation of Above Nine Readings: 0.95%

Theoretical Calculations:

Solution B contains 8.4 mg of CaCO₃ (Theoretical Amount)

Solution A contains	(8.4 x 5) = 42 mg of CaC	O ₃ (Theoretical Amount)
---------------------	----------	------------------	-------------------------------------

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
9.2 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	9.2 mg CaCO ₃		

Solution B contains 9.2 mg of CaCO₃ (Experimental Amount)

Solution A contains (9.2 x 5) = 46.0 mg of CaCO₃ (Experimental Amount)

30) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of Egg Shell was prepared by dissolving 42.0 mg of Dry Egg Shell Powder)

0.042 g dry egg shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 22: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.6	8.6	
2	0.0	8.6	8.6	8.6
3	0.0	8.6	8.6	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
8.6 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	8.6 mg CaCO ₃		

Solution B contains 8.6 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.6 x 5) = 43.0 mg of CaCO₃ (Experimental Amount)

31) Gravimetric Estimation of Calcium in Egg-Shell as Calcium Carbonate (CaCO₃) (Stock solution of Egg-Shell was prepared by digesting 42.0 mg of Dry Egg-Shell Powder with 1.0 mL Con. HCl)

42.0 mg of dry Egg-Shell powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates

were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Paper (in g)	Paper + Precipitates)	Precipitates	Reading
110.	r uper (m g)	(in g)	(in g)	(in mg)
01	1.0672 g	1.1281	0.0609	
02	1.0728 g	1.1337	0.0609	60.9
03	1.0989 g	1.1604	0.0615	1

Calculations:

- 1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$
- $100.0 \text{ g CaCO}_3 \equiv 146.08 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$
- $0.042 \text{ g CaCO}_3 \equiv 0.0613 \text{ g CaC}_2\text{O}_4.\text{H}_2\text{O}$

<u>Therefore, for obtained 60.9 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 41.7 mg</u>

32) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand, Aq. Solution of Na₃HEDTA (pH 11) as titrant and bromothymol blue as Indicator (Stock solution of CaCO₃ was prepared by dissolving 48.0 mg of Sea Shell Powder)

0.048 g sea shell powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0

mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). 50.0 mL of solution B was transferred to 250.0 mL conical flask. To this, 3-4 drops of bromothymol blue indicator was added. Colour of solution was colourless to pale green. Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, titration was performed by drop wise addition of burette solution to the conical flask. With progress of titration, pH of solution decreases and colour of solution changed from light green to yellow. After surpassing the equivalence point, further addition of Na₃HEDTA solution caused sharp increase in the pH of solution i.e pH≥7.5 and its colour changed from yellow to intense blue which was detected as end point of the titration. This experiment was repeated three times. Obtained observations are listed below.

Table 23A (Solution Set-I): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.5	10.5	
2	0.0	10.5	10.5	10.5
3	0.0	10.5	10.5	1

Table 23B (Solution Set-II): Readings of complexometric titration between Aq. Solutionsof Ca+2 and Na3HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.7	10.7	10.5
2	0.0	10.5	10.5	

|--|

Table 23C (Solution Set-III): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	10.5	10.5	
2	0.0	10.5	10.5	10.5
3	0.0	10.7	10.7	

Relative Standard Deviation of Above Nine Readings: 0.84%

Theoretical Calculations:

Solution B contains 9.6 mg of CaCO₃ (Theoretical Amount)

Solution A contains (9.6 x 5) = 48 mg of CaCO₃ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
10.5 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	10.5 mg CaCO ₃		

Solution B contains 10.5 mg of CaCO₃ (Experimental Amount)

Solution A contains (10.5 x 5) = 52.5 mg of CaCO₃ (Experimental Amount)

33) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of CaCO₃ was prepared by dissolving
48.0 mg of Dry Sea Shell Powder)

0.048 g sea shell powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to

make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 24: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.8	9.8	
2	0.0	9.8	9.8	9.8
3	0.0	9.8	9.8	

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	≡	0.4 mg Ca ⁺²
9.8 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	9.8 mg CaCO ₃		

Solution B contains 9.8 mg of CaCO₃ (Experimental Amount)

Solution A contains (9.8 x 5) = 49.0 mg of CaCO₃ (Experimental Amount)

34) Gravimetric Estimation of Calcium in Sea-Shell as Calcium Carbonate (CaCO₃) (Stock solution of Sea-Shell was prepared by digesting 48.0 mg of Dry Sea-Shell Powder with 1.0 mL Con. HCl)

48.0 mg of dry Sea-Shell powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment No.	Weight of Filter Paper (in g)	Weight of (Filter Paper + Precipitates)	Weight of Precipitates	Concordant Reading
	1 (0)	(in g)	(1n g)	(1n mg)
01	1.1071	1.1778	0.0707	
02	1.0803	1.1515	0.0712	70.7
03	1.0821	1.1528	0.0707	

Calculations:

 $1.0 \text{ mole of } CaCO_3 \equiv 1.0 \text{ mole of } CaC_2O_4.H_2O$ $100.0 \text{ g } CaCO_3 \equiv 146.08 \text{ g } CaC_2O_4.H_2O$ $0.0480 \text{ g } CaCO_3 \equiv 0.0701 \text{ g } CaC_2O_4.H_2O$

<u>Therefore, for obtained 70.7 mg CaC₂O₄.H₂O, the equivalent amount of CaCO₃ is 48.4 mg</u>

35) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using Aq. Solution of Ca⁺² (pH 7) as titrand, Aq. Solution of Na₃HEDTA (pH 11) as titrant and bromothymol blue as indicator (Stock solution of CaCO₃ was prepared by dissolving 40.0 mg of Calcium Tablet Powder)

0.040 g calcium tablet powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). 50.0 mL of solution B was transferred to 250.0 mL conical flask. To this, 3-4 drops of bromothymol blue indicator was added. Colour of solution was colourless to pale green. Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, titration was performed by drop wise addition of burette solution to the conical flask. With progress of titration, pH of solution decreases and colour of solution changed from light green to yellow. After surpassing the equivalence point, further addition of Na₃HEDTA solution caused sharp increase in the pH of solution i.e pH≥7.5 and its colour changed from

yellow to intense blue which was detected as end point of the titration. This experiment was repeated three times. Obtained observations are listed below.

Table 25A (Solution Set-I): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.9	8.9	
2	0.0	8.9	8.9	8.9
3	0.0	8.9	8.9	

Table 25B (Solution Set-II): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	9.0	9.0	
2	0.0	8.9	8.9	8.9
3	0.0	8.9	8.9	

Table 25C (Solution Set-III): Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₃HEDTA by using bromothymol blue as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.9	8.9	
2	0.0	9.1	9.1	8.9
3	0.0	8.9	8.9	

Relative Standard Deviation of Above Nine Readings: 0.99%

Theoretical Calculations:

Solution B contains 8.0 mg of CaCO₃ (Theoretical Amount)

Solution A contains $(8.0 \times 5) = 40 \text{ mg of } CaCO_3$ (Theoretical Amount)

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	=	0.4 mg Ca ⁺²
8.9 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	8.9 mg CaCO ₃		

Solution B contains 8.9 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.9 x 5) = 44.5 mg of CaCO₃ (Experimental Amount)

36) Estimation of Calcium as Calcium Carbonate (CaCO₃) by using conventional complexometric titration method (Stock solution of CaCO₃ was prepared by dissolving 40.0 mg of Dry Calcium Tablet Powder)

0.040 g sea shell powder was dissolved in 0.1 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 250.0 mL conical flask (**Solution B**). To this, 1.5 test tube (Approx. 10-12 mL) NH₄OH-NH₄Cl buffer (pH 10) was added. Then, 4-5 drops of Eriochrome Black-T indicator was added. Solution in the conical flask was turned wine red and it was shaken well. Aq. Solution of Na₂H₂EDTA was filled in 25.0 mL burette. Then, titration was performed by drop wise addition of burette solution to the conical flask. A sharp colour change from wine red to blue was observed at the end point. This experiment was repeated three times. Obtained observations are listed below.

Table 26: Readings of complexometric titration between Aq. Solutions of Ca⁺² and Na₂H₂EDTA by using Eriochrome Black-T as indicator

Experiment	Initial Reading	Final Reading	Difference	Concordant
No.	(in mL)	(in mL)	(in mL)	Reading (in mL)
1	0.0	8.2	8.2	
2	0.0	8.2	8.2	8.2
3	0.0	8.2	8.2	-

Experimental Calculations:

1000.0 mL	$1M Na_2H_2EDTA \equiv$	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 g CaCO ₃	≡	0.4 g Ca ⁺²
1.0 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	1.0 mg CaCO ₃	=	0.4 mg Ca ⁺²
8.2 mL	$0.01M \text{ Na}_2\text{H}_2\text{EDTA} \equiv$	8.2 mg CaCO ₃		

Solution B contains 8.2 mg of CaCO₃ (Experimental Amount)

Solution A contains (8.2 x 5) = 41.0 mg of CaCO₃ (Experimental Amount)

37) Gravimetric Estimation of Calcium in Calcium Tablet as Calcium Carbonate (CaCO₃) (Stock solution of Calcium Tablet was prepared by digesting 40.0 mg of Dry Calcium Tablet Powder with 1.0 mL Con. HCl)

40.0 mg of dry Calcium Tablet powder was taken in 100.0 mL beaker. To this, 1.0 mL Con. HCl was added with stirring followed by addition of 10.0 mL water. Beaker was covered with watch glass and then heated till the solution became clear and carbon dioxide expelled completely. Sides of beaker and watch glass were rinsed with distilled water and diluted up to 50.0 mL. Then, solution was heated to boiling and 2 drops of methyl red indicator was added. To this, 5.0 mL 5% ammonium oxalate solution was added. To the resulted hot solution, (1:1) ammonia solution was added drop wise and with constant stirring until the mixture became neutral (color of solution changes to yellow from red). Formed precipitates

were allowed to settle without further heating for one hour. Precipitates were filtered through previously weighed Whatman filter paper 40 and washed with 0.1% ammonium oxalate solution till it became free from chloride. Precipitates were dried on metallic cone on sand bath. Weight the amount of (Precipitate + Whatmann filter paper) and subtract it from the weight of empty Whatmann filter paper. This experiment was repeated three times and the results are reported below.

Experiment	Weight of Filter	Weight of (Filter	Weight of	Concordant
No	Paper (in g)	Paper + Precipitates)	Precipitates	Reading
110.	r aper (m g)	(in g)	(in g)	(in mg)
01	1.0772	1.1352	0.0580	
02	1.1129	1.1717	0.0588	58.0
03	1.0697	1.1277	0.0580]

Calculations:

- 1.0 mole of $CaCO_3 \equiv 1.0$ mole of $CaC_2O_4.H_2O$
- $100.0 \text{ g CaCO}_3 \equiv 146.08 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$
- $0.0400 \text{ g CaCO}_3 \equiv 0.0584 \text{ g CaC}_2\text{O}_4\text{.H}_2\text{O}$

<u>Therefore, for obtained 58.0 mg CaC_2O_4 .H₂O, the equivalent amount of CaCO₃ is 39.7 mg</u>

38) pH-Metric Estimation of Lithium as Lithium Carbonate (Li₂CO₃) by using Aq. Solution of Li⁺ (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Lithium Carbonate was prepared by dissolving 55.0 mg of Dry Lithium Carbonate Powder)

0.055 g dry lithium carbonate powder was dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was

transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 3.2. pH of this solution was adjusted to 7 by adding 2.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 9.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 27: Readings of pH-Metric Titration between Aq. Solutions of Li⁺ (present in Lithium Carbonate) and Na₃HEDTA

Sr. No.	Volume of 0.01M Na3HEDTA (in mL)	рН
1	0	7.06
2	0.5	7.49
3	1	8.2
4	1.5	8.59
5	2	9.02
6	2.5	9.42
7	3	9.74
8	3.5	9.82
9	4	9.93
10	4.5	9.97
11	5	10.04
12	5.5	10.08
13	6	10.12
14	6.5	10.15
15	7	10.19
16	7.5	10.24
17	8	10.34
18	8.5	10.42
19	9	10.52

Figure 10: Effect of Aq.Na₃HEDTA Addition on pH of Li⁺ Solution

During this titration, release of one H⁺ ion was not taking place and hence decrease in pH was not observed. However, continuous increase in pH was observed. No sharp equivalence point was observed.

39) pH-Metric Estimation of Sodium as Sodium Chloride (NaCl) by using Aq. Solution of Na⁺ (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Sodium Chloride was prepared by dissolving 29.2 mg of Sodium Chloride Powder)

0.0292 g dry sodium chloride powder was dissolved in pure water. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 6.7. pH of this solution was adjusted to 7 by adding 0.2 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process
was repeated by adding $0.5 \text{ mL } 0.01 \text{M } \text{Na}_3 \text{HEDTA}$ from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 28: Readings of pH-Metric Titration between Aq. Solutions of Na⁺ (present in Sodium Chloride) and Na₃HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0	7.09
2	0.5	7.2
3	1	7.3
4	1.5	7.6
5	2	8.3
6	2.5	8.75
7	3	9.3
8	3.5	9.47
9	4	9.72
10	4.5	9.77
11	5	9.85
12	5.5	9.91
13	6	9.98
14	6.5	10.03
15	7	10.08
16	7.5	10.12
17	8	10.16
18	8.5	10.2
19	9	10.26

Figure 11: Effect of Aq.Na₃HEDTA Addition on pH of Na⁺ Solution

During this titration, release of one H⁺ ion was not taking place and hence decrease in pH was not observed. However, continuous increase in pH was observed. No sharp equivalence point was observed.

40) pH-Metric Estimation of Potassium as Potassium Chloride (KCl) by using Aq. Solution of K⁺ (pH 7) as titrand and Aq. Solution of Na₃HEDTA (pH 11) as titrant (Stock solution of Potassium Chloride was prepared by dissolving 37.2 mg of Potassium Chloride Powder)

0.0372 g dry potassium chloride powder was dissolved in pure water. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 6.5. pH of this solution was adjusted to 7 by adding 0.2 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process

was repeated by adding $0.5 \text{ mL } 0.01 \text{M } \text{Na}_3 \text{HEDTA}$ from burette up to 12.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 29: Readings of pH-Metric Titration between Aq. Solutions of K⁺ (present in Potassium Chloride) and Na₃HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0	7.08
2	0.5	7.2
3	1	7.3
4	1.5	7.41
5	2	7.67
6	2.5	8.1
7	3	9.11
8	3.5	9.41
9	4	9.61
10	4.5	9.74
11	5	9.83
12	5.5	9.89
13	6	9.99
14	6.5	10.05
15	7	10.09
16	7.5	10.13
17	8	10.17
18	8.5	10.2
19	9	10.24

Figure 12: Effect of Aq.Na₃HEDTA Addition on pH of K⁺ Solution

During this titration, release of one H⁺ ion was not taking place and hence decrease in pH was not observed. However, continuous increase in pH was observed. No sharp equivalence point was observed.

41) pH-Metric Estimation of Metal Ions from the mixture of (Ca⁺² and Mg⁺²). Aq. Solution of Ca⁺² and Mg⁺² was prepared by mixing 0.0375 g CaCO₃ and 0.0298 g MgCO₃ respectively. pH of this solution was adjusted to 7 and then it was taken as titrand and Aq. Solution of Na₃HEDTA (pH 11) was taken as titrant

0.0375 g CaCO₃ and 0.0298 g MgCO₃ powder was mixed well and then dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.2. pH of this solution was adjusted to 7 by adding 3.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then

pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na_3HEDTA from burette up to 19.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 30: pH-Metric	Titration	Readings	between	Aq.	Solutions	of (Ca ⁺² +	Mg ⁺²)	and
Na ₃ HEDTA								

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0	7.05
2	0.5	7
3	1	6.96
4	1.5	6.89
5	2	6.84
6	2.5	6.79
7	3	6.73
8	3.5	6.68
9	4	6.64
10	4.5	6.6
11	5	6.55
12	5.5	6.53
13	6	6.49
14	6.5	6.45
15	7	6.43
16	7.5	6.4
17	8	6.37
18	8.5	6.34
19	9	6.31
20	9.5	6.29
21	10	6.27
22	10.5	6.25
23	11	6.22
24	11.5	6.2
25	12	6.18
26	12.5	6.16
27	13	6.15
28	13.5	6.13
29	14	6.12
30	14.5	6.1
31	15	6.68
32	15.5	6.98

33	16	7.3
34	16.5	8.22
35	17	8.74
36	17.5	9.28
37	18	9.59
38	18.5	9.75
39	19	9.89

Figure 13: Effect of Aq.Na₃HEDTA Addition on pH of (Ca⁺² + Mg⁺²) Solution

Observations: During this titration, formation of Ca- and Mg-EDTA complexes and release of one H⁺ ion was taking place and hence decrease in pH from 7.04 to 6.10 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.10 to 6.68 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 6.98, 7.30 and 8.22. <u>So sharp equivalence point for the titration was observed at 14.5 mL.</u>

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution B contains 5.9 mg of MgCO₃ (Theoretical Amount)

1.0 mL 0.01M Na₃HEDTA = 1.0 mg CaCO₃ = 0.84 mg MgCO₃ Expected equivalence point is (7.5 + 7.0) mL = 14.5 mL Na₃HEDTA (Theoretical) Solution A contains (13.4 x 5) = 67.0 mg of Total (Ca⁺² + Mg⁺²) content (Theoretical Amount)

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	1M Na ₃ HEDTA	≡	84.31 g MgCO ₃	≡	24.3 g Mg ⁺²
1000.0 mL	0.01M Na ₃ HEDTA	≡	1.0 g CaCO ₃	≡	0.84 g MgCO ₃
1.0 mL	0.01M Na ₃ HEDTA	≡	1.0 mg CaCO ₃	≡	0.84 mg MgCO ₃

Experimental equivalence point: 14.5 mL, which was utilized to form complexes with 7.4 mg CaCO₃ and 5.9 mg of MgCO₃

Theoretical and experimental equivalence point shows very good agreement

42) pH-Metric Estimation of Metal Ions from the mixture of (Ca⁺² and Ba⁺²). Aq. Solution of Ca⁺² and Ba⁺² was prepared by mixing 0.0375 g CaCO₃ and 0.0490 g BaCO₃ respectively. pH of this solution was adjusted to 7 and then it was taken as titrand and Aq. Solution of Na₃HEDTA (pH 11) was taken as titrant

0.0375 g CaCO₃ and 0.0490 g BaCO₃ powder was mixed well and then dissolved in 0.2 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.5. pH of this solution was adjusted to 7 by adding 3.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 17.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 31: pH-Metric Titration Readings between Aq. Solutions of (Ca⁺² + Ba⁺²) and Na₃HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0	7.09
2	0.5	7.02
3	1	6.98
4	1.5	6.94
5	2	6.9
6	2.5	6.85
7	3	6.81
8	3.5	6.78
9	4	6.73
10	4.5	6.69
11	5	6.65
12	5.5	6.61
13	6	6.57
14	6.5	6.52
15	7	6.48
16	7.5	6.44
17	8	6.39
18	8.5	6.34
19	9	6.31
20	9.5	6.29
21	10	6.28
22	10.5	6.26
23	11	6.24
24	11.5	6.22
25	12	6.2
26	12.5	6.18
27	13	6.77
28	13.5	7.08
29	14	7.39
30	14.5	7.64
31	15	7.92
32	15.5	8.38
33	16	8.85
34	16.5	9.05
35	17	9.39

Figure 14: Effect of Aq.Na₃HEDTA Addition on pH of (Ca⁺² + Ba⁺²) Solution

Observations: During this titration, formation of Ca- and Ba-EDTA complexes and release of one H⁺ ion was taking place and hence decrease in pH from 7.09 to 6.18 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.18 to 6.77 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 7.08, 7.39 and 7.64. <u>So</u>

sharp equivalence point for the titration was observed at 12.5 mL.

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution B contains 9.8 mg of BaCO₃ (Theoretical Amount)

1.0 mL 0.01M Na₃HEDTA = 1.0 mg CaCO₃ = 1.97 mg BaCO₃ Expected equivalence point is (7.5 + 5.0) mL = 12.5 mL Na₃HEDTA (Theoretical) Solution A contains $(17.3 \times 5) = 86.5$ mg of Total $(Ca^{+2} + Ba^{+2})$ content (Theoretical Amount)

Experimental Calculations:

1000.0 mL	1M Na ₃ HEDTA	≡	100.0 g CaCO ₃	≡	40.0 g Ca ⁺²
1000.0 mL	1M Na ₃ HEDTA	≡	197.35 g BaCO ₃	≡	137.32 g Ba ⁺²

1000.0 mL0.01M Na₃HEDTA \equiv 1.0 g CaCO₃ \equiv 1.97 g BaCO₃1.0 mL0.01M Na₃HEDTA \equiv 1.0 mg CaCO₃ \equiv 1.97 mg BaCO₃Experimental equivalence point:12.5 mL, which was utilized to form complexes with 7.5mg CaCO₃ and 9.8 mg of BaCO₃

Theoretical and experimental equivalence point shows very good agreement

43) pH-Metric Estimation of Metal Ions from the mixture of (Ca⁺² and Sr⁺²). Aq. Solution of Ca⁺² and Sr⁺² was prepared by mixing 0.0375 g CaCO₃ and 0.050 g SrCl₂.6H2O respectively. pH of this solution was adjusted to 7 and then it was taken as titrand and Aq. Solution of Na₃HEDTA (pH 11) was taken as titrant

0.0375 g CaCO₃ and 0.050 g SrCl₂.6H2O powder was mixed well and then dissolved in 0.3 mL 11.3N HCl. It was transferred to a 250.0 mL standard volumetric flask and diluted up to the mark with water. Solution was shaken well to make it homogeneous (**Solution A**). Then, 50.0 mL of Solution A was transferred to a 100.0 mL beaker. Then, pH electrode was inserted to this solution and pH value was found to be 2.5. pH of this solution was adjusted to 7 by adding 3.0 mL 0.33 M NaOH solution (**Solution B**). Aqueous solution of 0.01M Na₃HEDTA (pH 11) was prepared by mixing 250.0 mL 0.01M Na₂H₂EDTA and 15.0 mL 0.33M NaOH solutions. This solution was filled in 25.0 mL burette as titrant. Then, 0.5 mL 0.01M Na₃HEDTA was added to Solution B having pH 7. Solution was shaken well with the help of glass rod and then pH reading was measured. Same process was repeated by adding 0.5 mL 0.01M Na₃HEDTA from burette up to 15.0 mL and pH reading was measured after each 0.5 mL addition of burette solution. Obtained readings and graph are described below.

Table 32: pH-Metric Titration Readings between Aq. Solutions of $(Ca^{+2} + Sr^{+2})$ and Na₃HEDTA

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН
1	0	7.06

2	0.5	6.99
3	1	6.95
4	1.5	6.92
5	2	6.89
6	2.5	6.86
7	3	6.83
8	3.5	6.8
9	4	6.77
10	4.5	6.74
11	5	6.72
12	5.5	6.68
13	6	6.66
14	6.5	6.62
15	7	6.58
16	7.5	6.55
17	8	6.52
18	8.5	6.48
19	9	6.45
20	9.5	6.42
21	10	6.39
22	10.5	6.35
23	11	6.32
24	11.5	6.29
25	12	6.25
26	12.5	6.76
27	13	7.08
28	13.5	7.44
29	14	7.82
30	14.5	8.37
31	15	8.96

Figure 15: Effect of Aq.Na₃HEDTA Addition on pH of (Ca⁺² + Sr⁺²) Solution

Observations: During this titration, formation of Ca- and Sr-EDTA complexes and release of one H⁺ ion was taking place and hence decrease in pH from 7.06 to 6.25 was observed. At equivalence point, release of H⁺ ion was stopped and sharp increase in pH was observed from 6.25 to 6.76 with further 0.5 mL addition of Na₃HEDTA (pH 11). Upon subsequent addition of Na₃HEDTA solution, pH value of solution significantly jumped to 7.08, 7.44 and 7.82. <u>So</u>

sharp equivalence point for the titration was observed at 12.0 mL.

Theoretical Calculations:

Solution B contains 7.5 mg of CaCO₃ (Theoretical Amount)

Solution B contains 11.0 mg of SrCl₂ (Theoretical Amount)

1.0 mL 0.01M Na₃HEDTA = 1.0 mg CaCO₃ = 2.66 mg SrCl₂.6H₂O Expected equivalence point is (7.5 + 4.1) mL = 11.6 mL Na₃HEDTA (Theoretical) Solution A contains (18.5 x 5) = 92.5 mg of Total (Ca⁺² + Sr⁺²) content (Theoretical Amount)

Experimental Calculations:

1000.0 mL1M Na₃HEDTA \equiv 100.0 g CaCO₃ \equiv 40.0 g Ca⁺²1000.0 mL1M Na₃HEDTA \equiv 266.62 g SrCl₂.6H₂O \equiv 87.62 g Sr⁺²

1000.0 mL $0.01M Na_3HEDTA \equiv$ $1.0 g CaCO_3 \equiv$ $2.66 g SrCl_2.6H_2O$ 1.0 mL $0.01M Na_3HEDTA \equiv$ $1.0 mg CaCO_3 \equiv$ $2.66 mg SrCl_2.6H_2O$

Experimental equivalence point: 12.0 mL, which was utilized to form complexes with 7.5 mg CaCO₃ and 11.0 mg of SrCl₂.6H₂O

Percentage Deviation: (11.6-12.0)/11.6 X 100 = 3.44%

Simulated Titration Curve

To derive simulated titration curve, we need K_f (formation constant for Ca-EDTA complex) and α_3 (fraction of EDTA exist in Na₃HEDTA form) values. K_f value for Ca-EDTA complex is 5 x 10¹⁰. To derive α_3 value of Na₃HEDTA, we need to use following formula.²

 $\alpha_3 = \frac{\text{Ka}_1 \cdot \text{Ka}_2 \cdot \text{Ka}_3}{[\text{H}^+]^3 + \text{Ka}_1 \cdot [\text{H}^+]^2 + \text{Ka}_1 \cdot \text{Ka}_2 \cdot [\text{H}^+] + \text{Ka}_1 \cdot \text{Ka}_2 \cdot \text{Ka}_3}$

Ka₁ for EDTA = 1.0×10^{-2}

Ka₂ for EDTA = 2.2×10^{-3}

Ka₃ for EDTA = 6.9×10^{-7}

pH-metric titration performed in experiment 02 is considered for this calculations.

Sr. No.	Volume of 0.01M Na ₃ HEDTA (in mL)	рН	[H ⁺]
1	0.0	7.06	8.7 x 10 ⁻⁸

2	0.5	6.99	1.02 x 10 -7
3	1.0	6.94	1.14 x 10 ⁻⁷
4	1.5	6.86	1.38 x 10 ⁻⁷
5	2.0	6.79	1.62 x 10 ⁻⁷
6	2.5	6.73	1.86 x 10 ⁻⁷
7	3.0	6.68	2.09 x 10 ⁻⁷
8	3.5	6.62	2.39 x 10 ⁻⁷
9	4.0	6.56	2.75 x 10 ⁻⁷
10	4.5	6.50	3.16 x 10 ⁻⁷
11	5.0	6.44	3.63 x 10 ⁻⁷
12	5.5	6.39	4.07 x 10 ⁻⁷
13	6.0	6.34	4.57 x 10 ⁻⁷
14	6.5	6.31	4.89 x 10 ⁻⁷
15	7.0	6.28	5.24 x 10 ⁻⁷
16	7.5	6.24	5.75 x 10 ⁻⁷
17	8.0	7.15	7.07 x 10 ⁻⁸
18	8.5	7.79	1.62 x 10 ⁻⁸
19	9.0	8.39	4.07 x 10 ⁻⁹
20	9.5	9.39	4.07 x 10 ⁻¹⁰
21	10.0	9.70	1.99 x 10 ⁻¹⁰

By using above data for $[H^{\scriptscriptstyle +}]$ and Ka_1, Ka_2, Ka_3, α_3 value of Na_3HEDTA is calculated.

Volume of Na ₃ HEDTA (in mL)	[H ⁺]	[H ⁺] ³	Ka1. [H+] ²	Ka1.Ka2. [H ⁺]	Ka1.Ka2.Ka3	α3
0.0	8.7 x 10 ⁻⁸	6.58503E-22	7.569E-17	1.914E-12	1.518E-11	0.888026956
0.5	1.02 x 10 -7	1.06121E-21	1.0404E-16	2.244E-12	1.518E-11	0.871206919
1.0	1.14 x 10 ⁻⁷	1.48154E-21	1.2996E-16	2.508E-12	1.518E-11	0.85820265
1.5	1.38 x 10 ⁻⁷	2.62807E-21	1.9044E-16	3.036E-12	1.518E-11	0.833324621
2.0	1.62 x 10 ⁻⁷	4.25153E-21	2.6244E-16	3.564E-12	1.518E-11	0.809847816
2.5	1.86 x 10 ⁻⁷	6.43486E-21	3.4596E-16	4.092E-12	1.518E-11	0.787657093
3.0	2.09 x 10 ⁻⁷	9.12933E-21	4.3681E-16	4.598E-12	1.518E-11	0.767502515
3.5	2.39 x 10 ⁻⁷	1.36519E-20	5.7121E-16	5.258E-12	1.518E-11	0.742713365
4.0	2.75 x 10 ⁻⁷	2.07969E-20	7.5625E-16	6.05E-12	1.518E-11	0.715000436
4.5	3.16 x 10 ⁻⁷	3.15545E-20	9.9856E-16	6.952E-12	1.518E-11	0.685853746
5.0	3.63 x 10 ⁻⁷	4.78321E-20	1.31769E- 15	7.986E-12	1.518E-11	0.655233384
5.5	4.07 x 10 ⁻⁷	6.74191E-20	1.65649E- 15	8.954E-12	1.518E-11	0.628944979
6.0	4.57 x 10 ⁻⁷	9.5444E-20	2.08849E- 15	1.0054E-11	1.518E-11	0.601519524
6.5	4.89 x 10 ⁻⁷	1.1693E-19	2.39121E- 15	1.0758E-11	1.518E-11	0.58518778
7.0	5.24 x 10 ⁻⁷	1.43878E-19	2.74576E- 15	1.1528E-11	1.518E-11	0.568310599
7.5	5.75 x 10 ⁻⁷	1.90109E-19	3.30625E- 15	1.265E-11	1.518E-11	0.545389749
8.0	7.07 x 10 ⁻⁸	3.53393E-22	4.99849E- 17	1.5554E-12	1.518E-11	0.907056578
8.5	1.62 x 10 ⁻⁸	4.25153E-24	2.6244E-18	3.564E-13	1.518E-11	0.977060158
9.0	4.07 x 10 ⁻⁹	6.74191E-26	1.65649E- 19	8.954E-14	1.518E-11	0.994136027
9.5	4.07 x 10 ⁻¹⁰	6.74191E-29	1.65649E- 21	8.954E-15	1.518E-11	0.999410493
10.0	1.99 x 10 ⁻¹⁰	7.8806E-30	3.9601E-22	4.378E-15	1.518E-11	0.999711677

Note: Value of α_3 (fraction of free HEDTA³⁻ ions) value will be zero at the beginning of titration.

Now, we have to find out $[Ca^{+2}]$ ions considering three situations i.e. 1) Before equivalence point, 2) At equivalence point, 3) After equivalence point (For all detailed calculations, please follow reference 1

Initially, we have taken 50.0 mL 0.0015M CaCO₃. It contains total 0.075 mmoles of CaCO₃. To this, 0.5 mL 0.01M Na₃HEDTA was added. It contains 0.005 mmoles of Na₃HEDTA. It will react with 0.005 mmoles of CaCO₃ and will form complex.

	Volume of Na ₃ HEDTA	Total Volume	_	
Sr. No.	Added (in mL)	(in mL)	[Ca ⁺²] (M)	рСа
1	0.0	50.0	0.00150	2.823908741
2	0.5	50.5	0.00138	2.860120914
3	0.5	51.0	0.001269	2.896196279
4	0.5	51.5	0.001159	2.935542011
5	0.5	52.0	0.001051	2.978810701
6	0.5	52.5	0.000946	3.024108864
7	0.5	53.0	0.000843	3.074172425
8	0.5	53.5	0.000741	3.130181792
9	0.5	54.0	0.0006424	3.192464972
10	0.5	54.5	0.0005447	3.2644011
11	0.5	55.0	0.0004489	3.348721986
12	0.5	55.5	0.0003547	3.450996738

13	0.5	56.0	0.0002623	3.581698709
14	0.5	56.5	0.0001715	3.76700389
15	0.5	57.0	0.00008228	4.084705717
16	0.5	57.5	2.18 x 10 ⁻⁷	6.661543506
17	0.5	58.0	3.31 x 10 ⁻¹⁰	9.480172006
18	0.5	58.5	1.541 x 10 ⁻¹⁰	9.812479279
19	0.5	59.0	1.008 x 10 ⁻¹⁰	9.996539468
20	0.5	59.5	7.505 x 10 ⁻¹¹	10.12465509
21	0.5	60.0	6.003 x 10 ⁻¹¹	10.22163889

Simulated Titration Curve

Uncertainty Calculation for pH-Metric Analysis

Sr. No.	Name of Equipment/Glassware	Uncertainty Involved	No. of Times Equipment/Glassware Used in	
			Experiment	
01	Digital balance	0.00005 g	Three	
02	Burette (25.0 mL)	0.05 mL	One	
03	Pipette (25.0 mL)	0.03 mL	Three	
04	Measuring Cyllinder	1.0 mL	One	
	(250.0 mL)			
05	SMF (250.0 mL)	0.1 mL	Two	

Uncertainty involved with pH measurement: 0.01

Uncertainty Calculation for Entries in the Table 1 of Manuscript

Entry	Uncertainty	Uncertainty	Uncertainty	Uncertainty	Uncertainty	Total %
No.	digital	arise from	arise from	measuring	arise from	Uncertainty
	balance	burette	pipette	cylinder	SMF	
1	0.16 %	1.33 %	0.36 %	0.40 %	0.08 %	2.33 %
2	0.10 %	0.66 %	0.36 %	0.40 %	0.08 %	1.60 %
3	0.07 %	0.44 %	0.36 %	0.40 %	0.08 %	1.35 %

Entry	Uncertainty arise from	Uncertainty	Uncertainty	Uncertainty arise from	Uncertainty	Total %
No.	digital balance	burette	pipette	measuring cylinder	SMF	Uncertainty
1	0.14 %	1.11 %	0.36 %	0.40 %	0.08 %	2.09 %
2	0.13 %	1.00 %	0.36 %	0.40 %	0.08 %	1.97 %
3	0.15 %	1.17 %	0.36 %	0.40 %	0.08 %	2.16 %
4	0.13 %	1.00 %	0.36 %	0.40 %	0.08 %	1.97 %

Uncertainty Calculation for Entries in the Table 2 of Manuscript

Uncertainty Calculation for Entries in the Table 3 of Manuscript

	Uncertainty	Uncertainty	Uncertainty	Uncertainty	Uncertainty	
Entry	arise from	orise from	orise from	arise from	orise from	Total %
No.	digital			measuring		Uncertainty
	balance	burette	pipette	cylinder	SMF	
1	0.13 %	0.93 %	0.36 %	0.40 %	0.08 %	1.90 %
2	0.15 %	1.08 %	0.36 %	0.40 %	0.08 %	2.07 %
3	0.13 %	0.95 %	0.36 %	0.40 %	0.08 %	1.92 %
4	0.15 %	1.12 %	0.36 %	0.40 %	0.08 %	2.11 %

References:

- G. H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis (Fifth Edition), Longan Scientific and Technical Publisher, New York, 1989, Page No. 551-553
- G. D. Christian, P. K. Dasgupta, K. A. Schug, *Analytical Chemistry* (Seventh Edition), John Wiley & Sons, River Street, Hoboken, 2014, Page No. 326-333