Supporting Information

Early Diagnosis of Autoimmune Diseases through Electrochemical Biosensing using Modified Plastic Chip Electrode

Kinjal B. Patel*1,2 b) Sunil Luhar1,2, c) Divesh N. Srivastava1,2a*

¹Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar- 364001, Gujarat, India.

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002

^{a)} Corresponding author: dnsrivastava@csmcri.res.in

^{b)} patelkinjal449@gmail.com

^{c)} scientistksv99@gmail.com

Figure S 2. EDX spectra of Au@PCE (A); MBA/Au@PCE (B); AB/MBA/Au@PCE (C)

Tabel S 1 Quantitative composition of working platform using EDX analysis

Electrode Platform	Carbon %	Oxygen %	Gold %	Sulphur %	Nitrogen %
Au@PCE	59.68	33.09	7.23		
MBA/Au@PCE	51.34	40.87.	6.88	0.91	
AB/MBA/Au@PCE	48.36	31.22	17.58	0.47	2.38

Figure S 3. EDX mapping image of Au@PCE.

Figure S 4. EDX mapping image of MBA/Au@PCE.

Figure S 5. EDX mapping image of AB/MBA/Au@PCE.

Figure S 6. FT-IR spectra of PCE and Au@PCE

 Table S 2 Comparison of Sensors for the chemokine detection reported in the literature

SI No.	Platform	Method	LOD	Dynamic	Target	Reference
				range	analyte	S
1.	IP 10 antibodies/ nanofilm	Non faradic EIS	Not	1-2000	CXCL10	1
	ZnO/ Au electrode		avalia	pg/mL		
			ble			
2.	Thiol gold bounded DNA	Square wave	60 pM	1-2000	CXCL10	2
	anchor strand/ Au disk	voltametry		nM		
	electrode					
3.	3,3'-dithiobis	Non-faradic EIS	1	1-512	CXCL10	3
	(sulfosuccinimidylpropionate)		pg/mL	pg/mL		
	/IP-10 antibody/ ZnO					
4.	DNA barcode- streptavidin	Flurosense		0-4000	CXCL9	4
			pg/mL	pg/mL		
5.	Magnetic nanoparticles/ gold	Chronoamperometr	65	0-10000	CXCL9	5
	nanoparticles/screen printed	У	pg/mL	pg/mL		
	electrode					
6.	2,2':5',2"-terthiophene-3' (p-	Chronoamperometr	0.078	0.1-10	CXCL5	6
	benzoic acid) /Aunps/glassy	У	ng/mL	ng/mL		
	carbon electrode					
7.	6-phosphonohexanoic acid/	EIS	6	0.02-3	CXCL8	7
	ITO		fg/mL	pg/mL		
8.	3-	EIS	11.9	0.02-4	CXCL8	8
	(triethoxysilyl)propylisocyana		fg/mL	pg/mL		
	te/fluorine tin oxide					
9.	Carboxylated magnetic	Amperometry	0.8	1-75	CXCL7	9
	microparticles/screen printed		ng/mL	ng/mL		
	carbon electrode					
10.	CXCL-10 antibody/MBA/	EIS	0.72	1 pg/mL -		This work
	Au@PCE		pg/mL	50 ng/mL		

- 1. A. S. Tanak, S. Muthukumar, S. Krishnan, K. L. Schully, D. V. Clark and S. Prasad, *Biosens Bioelectron*, 2021, **171**, 112726.
- 2. A. J. Bonham, N. G. Paden, F. Ricci and K. W. Plaxco, *Analyst*, 2013, **138**, 5580-5583.
- 3. B. Jagannath, M. Pali, K.-C. Lin, D. Sankhala, P. Naraghi, S. Muthukumar and S. Prasad, *Advanced Materials Technologies*, 2022, **7**, 2101356.
- 4. I. Lee, S.-J. Kwon, M. Sorci, P. S. Heeger and J. S. Dordick, *Analytical Chemistry*, 2021, **93**, 16528-16534.
- 5. K. L. Singampalli, C. Neal Harris, C. Yee, J. S. Lin and P. B. Lillehoj, *Advanced Sensor Research*, 2024, **n/a**, 2400004.
- 6. S. Chung, P. Chandra, J. P. Koo and Y.-B. Shim, *Biosensors and Bioelectronics*, 2018, **100**, 396-403.
- 7. E. B. Aydın and M. K. Sezgintürk, *Analytical Biochemistry*, 2018, **554**, 44-52.
- 8. E. B. Aydın and M. K. Sezgintürk, *Electroanalysis*, 2021, **33**, 1596-1605.
- 9. S. Guerrero, E. Sánchez-Tirado, L. Agüí, A. González-Cortés, P. Yáñez-Sedeño and J. M. Pingarrón, *Talanta*, 2021, **234**, 122705.