Chemically modified graphitic carbon nitride nanosheets for selective turn-off fluorescent detection of Al(III) ions in crabs (Brachyura)

Y.G. Abou El-Reash^{1, 2}, Osama El-Awady², Faisal K. Algethami¹, Fathi S. Awad^{2,3*}

¹ Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, P.O. Box, 90950, Riyadh 11623, Saudi Arabia.

² Chemistry Department, Faculty of Science, Mansoura University, 23768 Mansoura, Egypt.

³Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City, Egypt.

Supporting Information

Figure S1: TEM of g-CN (a), and OH/g-CN (b).

Figure S2. EDX analysis of OH/g-CN.

Table 51. The elemental composition of g-erv and 110/g-erv from A15 analysis.						
Sample	C (%)	O (%)	N (%)			
g-CN	45.98	2.62	51.4			
HO/g-CN	38.23	18.55	43.22			

Table S1. The elemental composition of g-CN and HO/g-CN from XPS analysis.

Table S2: Different techniques for AL (III) detections

Techniques	LOD	Response	Linear calibration	RSD (%)	Applications	Ref.
		time	graph			
ICP-AES	$0.07 imes 10^{-3} \ \mu M$	—	-	3.7	Rice flour and Lake water	1
ICP-AES	2.22 × 10 ⁻³ μM		_	1.6	Biological and vegetable samples, human urine and spiked water samples	2
ICP-MS	1.85×10^{-3} μM	—	_	11	Real water samples	3
GF-AAS	2.2 × 10 ⁻³ μM	-	$(1 \times 10^{-5} \text{ to})$ $250 \times 10^{-5} \times 10^{-5} \times 10^{-5} \text{ (mg/L)}$	3.1–5.2	Biological and environmental	4
FAAS	6.6×10 ⁻³ μM	_	(0.1 to 20.0) (mg/L)	2.4	Real water samples	5
FAAS	$\frac{2.86\times10^{-4}}{\mu M}$		$(1 \times 10^{-3} \text{ to})$ 20 × 10 ⁻³) (mg/L)	5	Dam waters	6
Fluorescence spectrophotom eter	$4.7\times 10^{-4}\mu M$	3 min	$(6.19 \times 10^{-7} \text{ to} 6 \times 10^{-5}) \text{ (mol/L)}$	< 5.0	Spiked lake and river water samples	7
Fluorescence spectrophotom eter	3.62µM	40 s	$(3.62 \times 10^{-6} \text{ to} 1 \times 10^{-4}) \text{ (mol/L)}$	2.82	Synthetic water	8
UV-Vis spectrophotom etric	3.71 µM	35 s	(0.1–1.0) (mg/L)	2.4–3.1	Synthetic water	9
Fluorescence spectrophotom eter	$4.8 imes 10^{-6} \mu M$	15 min	$(1.0 \times 10^{-10} \text{ to} 1.0 \times 10^{-5}) (M/L)$	< 5.0	Synthetic water	10
Reflectance spectrophotom etry	12.6 µM	3 min	$(0.34 \times 10^{-3} \text{ to} \ 10.75 \times 10^{-3}) \ (mg/L)$	1.73	_	11
Diffuse reflectance measurements using a miniature fiber optic	6.67µM		0.18-2 ppm	8.8	Leachates from cookware, antacids and hygienic care products	12

spectrometer						
Spectrofluorim	0.05 µM	—	—	5	Dialysis solutions	13
eter					and water	
HO/g-CN					Real water samples	This
fluorescence	0.272 μM	2 min	1.85 – 14.82 μM	2.6	and crabs	work
sensor					(Brachyura)	
					samples	

Figure S3.Time-dependent fluorescence quenching of HO/g-CN by 3.0 ppm Al³⁺ in phosphate buffer (pH 8).(Excitation at 290 nm).

Figure S4: FTIR spectra of HO/g-CN and HO/g-CN-Al(III).

References

- 1. P. Liang, L. Yang, B. Hu and Z. Jiang, *Analytical sciences*, 2003, **19**, 1167-1172.
- 2. H. Zheng, X. Gao, L. Song, H. Guo, S. Yang and X. Chang, *Microchimica Acta*, 2011, **175**, 225-231.
- 3. L. Djerahov, P. Vasileva, I. Karadjova, R. M. Kurakalva and K. K. Aradhi, *Carbohydrate polymers*, 2016, **147**, 45-52.
- 4. M. H. Mashhadizadeh and M. Amoli-Diva, *Journal of Analytical Atomic Spectrometry*, 2013, **28**, 251-258.
- 5. H. Ciftci, C. Er and M. Ozkan, *Desalination and Water Treatment*, 2016, **57**, 6916-6924.
- 6. Ö. Yalçınkaya, H. Erdoğan, H. Ciftci and A. R. Türker, *Spectroscopy Letters*, 2012, **45**, 344-351.
- 7. F. B. M. Suah, M. Ahmad and L. Y. Heng, *Sensors and Actuators B: Chemical*, 2014, **201**, 490-495.
- 8. N. S. Muk and R. Narayanaswamy, *Analytical and Bioanalytical Chemistry*, 2006, **386**, 1235-1244.
- 9. S. M. Supian, T. L. Ling, L. Y. Heng and K. F. Chong, *Analytical methods*, 2013, 5, 2602-2609.
- 10. L. Mendecki, S. Granados-Focil, M. Jendrlin, M. Mold and A. Radu, *Analytica Chimica Acta*, 2020, **1101**, 141-148.
- 11. M. Ahmad and R. Narayanaswamy, *Science of the total environment*, 1995, **163**, 221-227.

- 12. V. Castaneda-Loaiza, M. Diaz-de-Alba, M. Granado-Castro, M. Galindo-Riano and M. Casanueva-Marenco, *Talanta*, 2019, **205**, 120102.
- 13. Y. İ. Coşkun and E. Henden, *Journal of analytical chemistry*, 2020, **75**, 167-175.