Supporting information

Figure S1. Fluorescence signal-to-background (F_{NMM}/F_{Blank}) of the approach when detecting exosomes with length of "2" section in L probes.

Table S1. All of the oligonucleotides used in this work.

Title	Sequences (5' to 3')					
L1	AAG CGT CTT TTT TGC GTT GTT AAT TTA AGA CGC TTG ACG					
	CTA ATA GTT TTT TTT TTT TTA TAT ACA CCC CAC CTC GCT					
	CCC GTG ACA CTA ATG CTA TT					
L2	Cholesterol-					
	GA CCC TAA GCA TAC ATG CTC ACT GAC GCT AGG TTT TTT					
	TT TTT TTT TCT ATT AGC TCA AGC GTC TTA AAT TCT AAC					
	CGT ATC GTG C					
H1	CTA ACC GTA TCG TGC TTT TTT TTT TTT GCA CGA TAC GGT					
	TAG AAT ATT AAC AAC GCA					
G-rich	GCA CGA TAC GGT TAG AGG GTA GGG CGG GTT GGG A					
··9"	TCC CAA CTT TCT AAC CGT AT					
H2 probe	CGG TTA GAA AGT TGC TAA CCG TAT CGT GCC AAC TTT					
	CTA A					

Name	Principle	Recognizing	Signal mode	LOD	Detection	Anti-	Label-	Ref
		target			range	interference	free	
						capability		
The method	Dual recognition+ chain	CD63; Lipid	Fluorescence	36 particles/µL	10^2 to 10^6	Yes	Yes	
	displacement+	bilayer			particles/µL			
	proximity ligation							
CRISPR-	CD63 aptamer based	CD63 protein	Fluorescence	10 ³	3×10^3 to 6×10^7	No	No	[1]
Cas based	recognition+ CRISPR-			particles/µL	particles/µL			
	Cas12a system							
Allosteric	CD63 aptamer based	CD63 protein	Fluorescence	10 ²	10^2 to 10^6	No	No	[2]
probe	recognition+ CRISPR-			particles/µL	particles/µL			
	Cas12a system+ reverse							
	transcription							
AcmPLA	Dual recognition+ chain	CD63; Lipid	Fluorescence	10 ²	10^2 to 10^6	Yes	No	[3]
	displacement+	bilayer		particles/µL	particles/µL			
	proximity ligation RCA							
Colorimetric	CD63 aptamer based	CD63;	Color change	1.6×10^2	1.4×10^3 to 2.8	No	Yes	[4]
biosensor	recognition+			particles/µL	\times 10 ⁵			
	hybridization chain				particles/µL			
	reaction							

 Table S2. A brief comparisons of the method with former exosomes detection methods.

RCA, rolling circle amplification.

References:

- 1. Zhao X, Zhang W, Qiu X, Mei Q, Luo Y, Fu W. 2020. Rapid and sensitive exosome detection with CRISPR/Cas12a. *Anal. Bioanal. Chem.* **412:** 601-609.
- Zhao X, Zeng L, Mei Q, Luo Y. 2020. Allosteric Probe-Initiated Wash-Free Method for Sensitive Extracellular Vesicle Detection through Dual Cycle-Assisted CRISPR-Cas12a. ACS Sens. 5: 2239-2246.
- 3. Zhao X, Luo C, Mei Q, Zhang H, Zhang W, Su D, *et al.* 2020. Aptamer-Cholesterol-Mediated Proximity Ligation Assay for Accurate Identification of Exosomes. *Anal. Chem.* **92:** 5411-5418.
- 4. Zhang Y, Wang D, Yue S, Lu Y, Yang C, Fang J, *et al.* 2019. Sensitive Multicolor Visual Detection of Exosomes via Dual Signal Amplification Strategy of Enzyme-Catalyzed Metallization of Au Nanorods and Hybridization Chain Reaction. *ACS Sens.* **4**: 3210-3218.