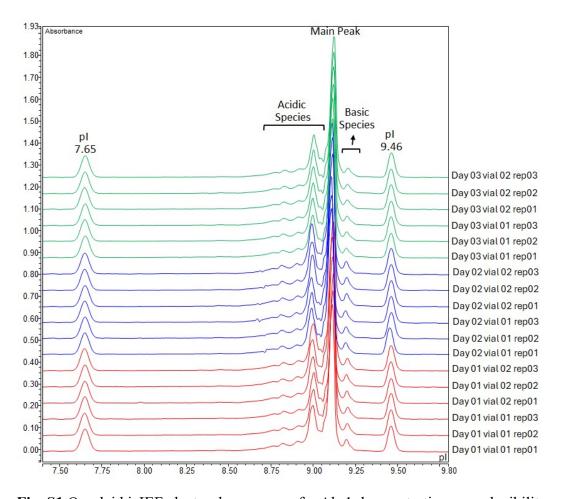
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Analysis of therapeutic monoclonal antibodies by imaged capillary isoelectric focusing (icIEF)

Haley Sutton, Feng Hong, Xuemei Han, Navin Rauniyar*

Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA


*corresponding author: <u>nrauniyar@tanvex.com</u>

Generic Name	Brand Name	Subclass	Expiration Date	
Adalimumab	Humira	IgG1	May 2018	
Bevacizumab	Avastin	IgG1	Jul 2017	
Ipilimumab	Yervoy	IgG1	Dec 2015	
Omalizumab	Xolair	IgG1	Jul 2019	
Pertuzumab	Perjeta	IgG1	Apr 2021	
Tocilizumab	Actemra	IgG1	Aug 2019	
Denosumab	Prolia	IgG2	Nov 2018	
Panitumumab	Vectibix	IgG2	Oct 2015	
Nivolumab	Opdivo	IgG4	Nov 2019	
Pembrolizumab	Keytruda	IgG4	Feb 2022	
Eculizumab	Soliris	IgG2/4	May 2018	

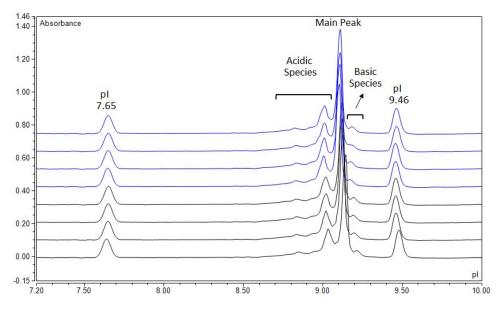

 Table S1 Details of 11 commercially available therapeutic mAbs

 Table S2 iCE3 system configuration

iCE Analyzer					
iCE Analyzer Model	iCE3				
Lamp Type	Deuterium				
Sample Transfer Time	70 sec				
Autosampler					
Autosampler Model	720NV				
Syringe Size	250 μL				
Syringe Load Rate	5 µL/sec				
Syringe Inject Rate	7 μL/min				
Withdraw Rate	5 µL/sec				
Load Duration	6 sec				
Sample Injection Duration	70 and 90 sec				
Transfer Time Delay	0 min				
Rinse Rate	50 µL/sec				
Тгау Туре	48 Vial Tray with 4 Rinse Vials				
Needle Depth	48 mm				

Fig. S1 Overlaid icIEF electropherograms of mAb-1 demonstrating reproducibility (**Experimental conditions:** 5% Pharmalyte pH 3-10, mAb-1 concentration 0.4 mg/mL, focusing time: 8 min at 3 kV)

Fig. S2 Overlay of icIEF electropherograms of mAb-1 analyzed in replicates at two different time points: 0 hours (black traces) and 24 hours (blue traces).

(Experimental conditions: Same as Figure S1)

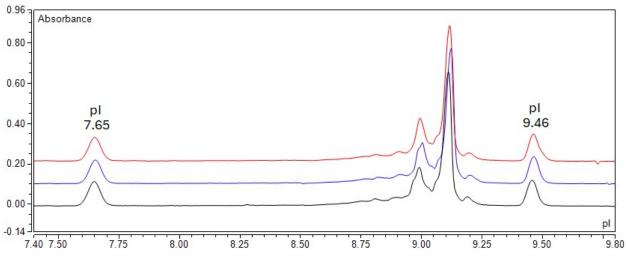


Fig. S3 Overlaid icIEF electropherograms of mAb-1 at three different concentrations of Pharmalyte pH 3-10: 4.75% (black), 5.0% (blue), and 5.25% (red)

(Experimental conditions: mAb-1 concentration, 0.4 mg/mL; focusing time: 8 min at 3.0 kV)

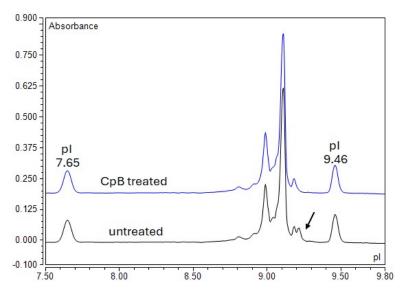
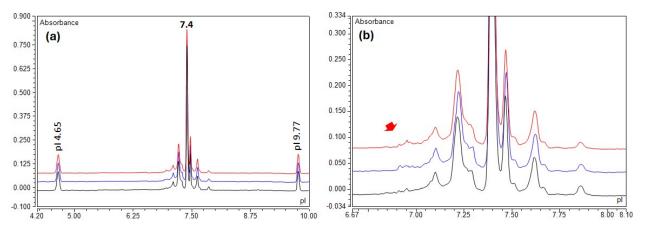



Fig. S4 icIEF electropherograms of an EU-Herceptin, untreated (black trace) and treated with carboxypeptidase B (blue trace)

Note: Carboxypeptidase (CpB) selectively cleaves Lys residues at the C-terminal end of proteins.

Fig. S5 Overlay of three replicate injections of pembrolizumab (Keytruda) icIEF electropherograms with focusing time of 6 min (a) Full view (b) zoomed-in view.

Note: The arrow indicates spikes, formed possibly due to protein precipitation.

(Experimental conditions: 0.35% methyl cellulose, 4% Pharmalyte pH 3-10, mAb concentration 0.6 mg/mL)

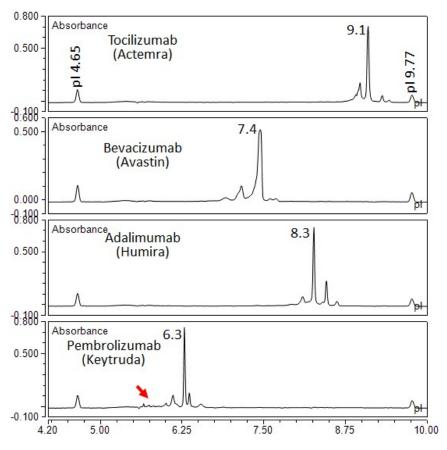


Fig. S6 icIEF electropherograms of four therapeutic mAbs

Note: The arrow indicates spikes, possibly due to protein precipitation.

(Experimental conditions: 0.35% methyl cellulose, 2% Pharmalyte pH 3-10, 2% Pharmalyte pH 8-10.5, mAb concentration 0.6 mg/mL, focusing time: 10 min at 3 kV)

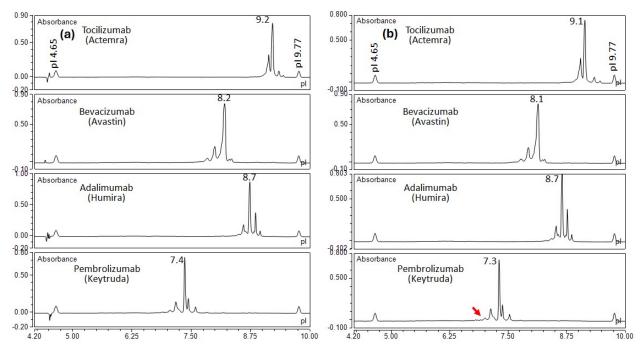
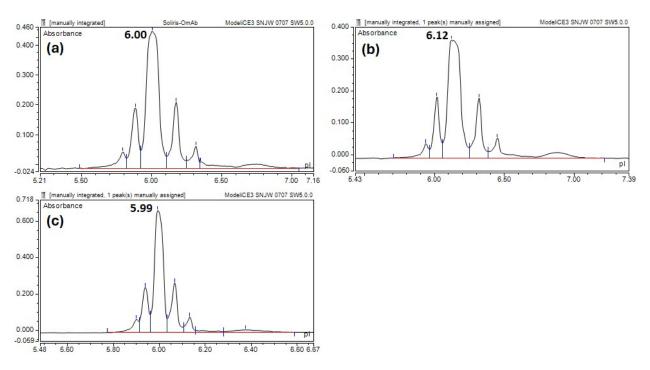



Fig. S7 icIEF electropherograms of four therapeutic mAbs (a) focusing time 8 min at 3 kV, (b) focusing time 10 min at 3 kV

Note: The arrow indicates spikes, possibly due to protein precipitation.

(Experimental conditions: 0.35% methyl cellulose, 4% Pharmalyte pH 3-10, 4 mM arginine, mAb concentration 0.6 mg/mL)

Fig. S8 Zoomed-in view of icIEF electropherograms of eculizumab (Soliris) under **(a)** native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, **(b)** denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and **(c)** denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Note: The broad peak in the basic region could be contributed by aggregates because size exclusion chromatography analysis showed 9.2% of high molecular weight species. No low molecular weight species were detected.

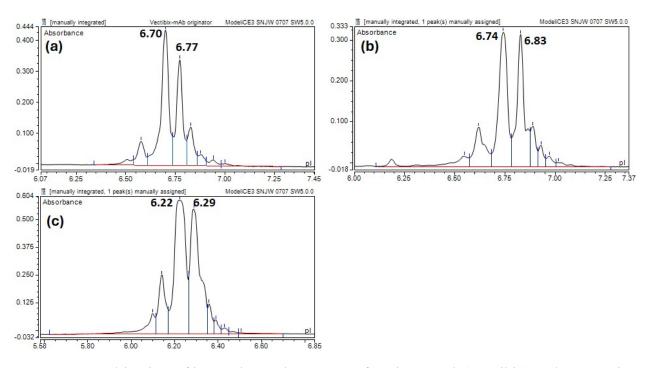


Fig. S9 Zoomed-in view of icIEF electropherograms of panitumumab (Vectibix) under (a) native condition with 4% Pharmalyte pH 3-10, (b) denaturing condition with 3.2 M urea, 4%
Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Note: The two main peaks are possibly due to formation of disulfide isoforms (Reference: A. Resemann, L. Liu-Shin, G. Tremintin, A. Malhotra, A. Fung, F. Wang, G. Ratnaswamy and D. Suckau, *MAbs*, 2018, **10**, 1200–1213)

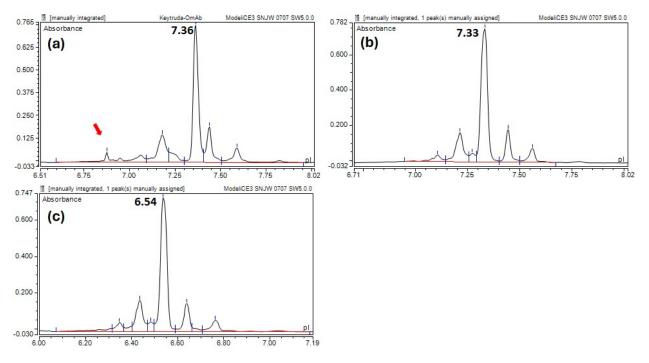


Fig. S10 Zoomed-in view of icIEF electropherograms of pembrolizumab (Keytruda) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Note: The arrow indicates spikes, possibly due to protein precipitation.

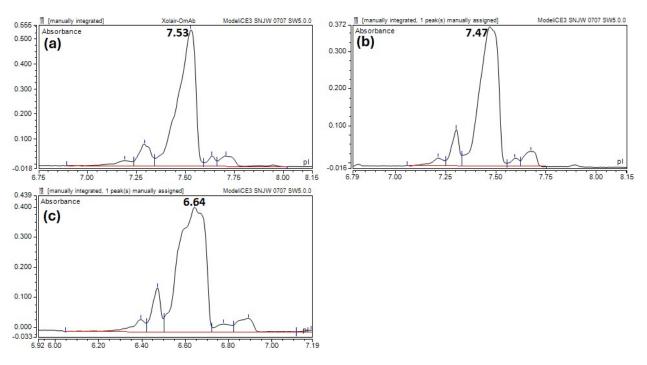


Fig. S11 Zoomed-in view of icIEF electropherograms of omalizumab (Xolair) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

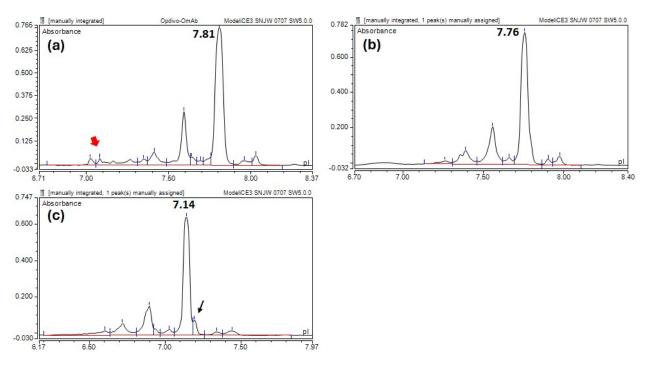


Fig. S12 Zoomed-in view of icIEF electropherograms of nivolumab (Opdivo) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Note: The red arrow in panel (a) shows spikes, possibly due to protein precipitation and the black arrow in panel (c) shows clearly visible shoulder basic peak.

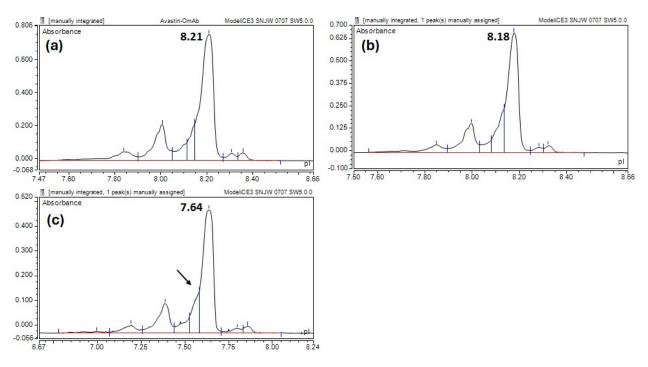


Fig. S13 Zoomed-in view of icIEF electropherograms of bevacizumab (Avastin) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Note: arrow indicates shoulder acidic peak is clearly visible

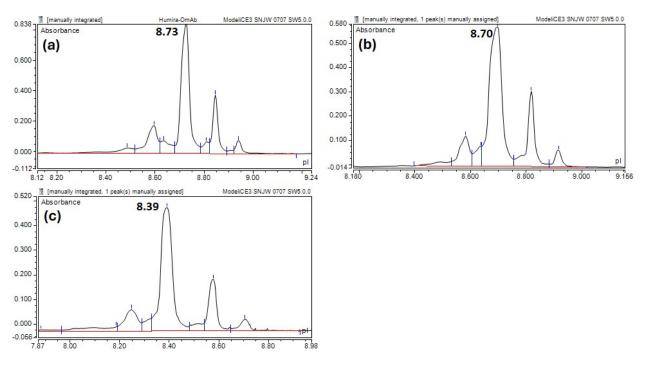


Fig. S14 Zoomed-in view of icIEF electropherograms of adalimumab (Humira) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

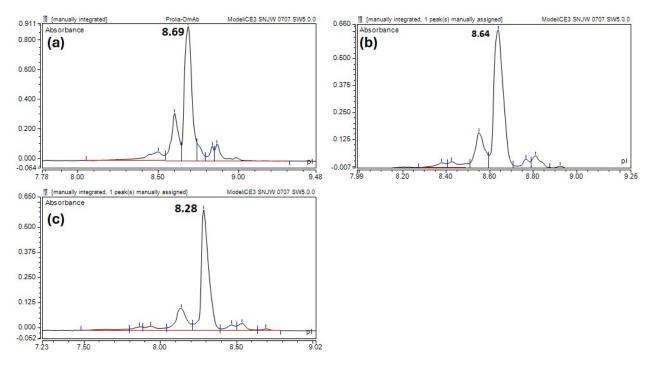


Fig. S15 Zoomed-in view of icIEF electropherograms of denosumab (Prolia) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

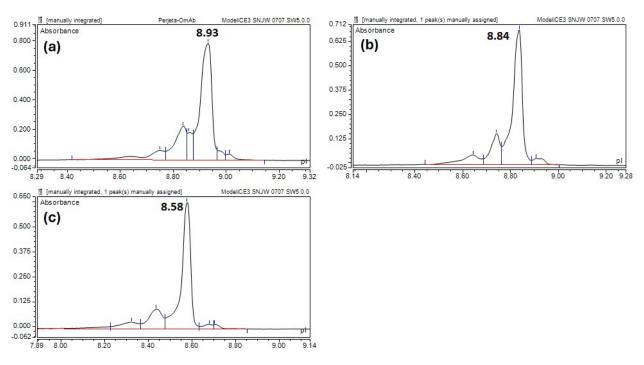


Fig. S16 Zoomed-in view of icIEF electropherograms of pertuzumab (Perjeta) under (a) native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, (b) denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

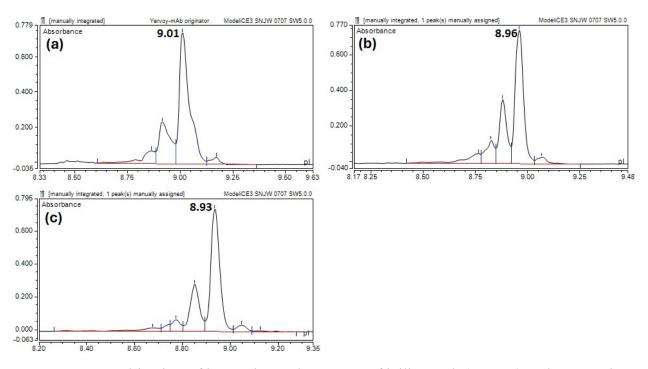
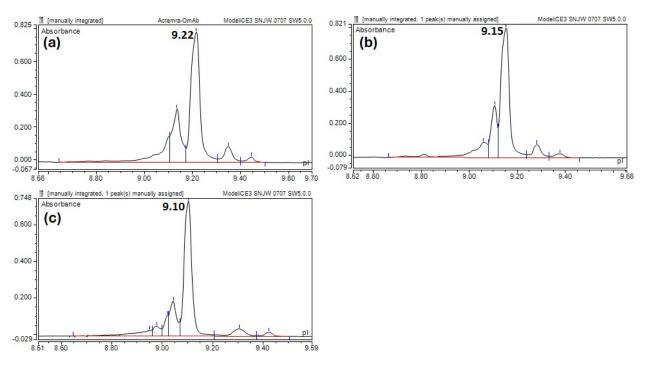



Fig. S17 Zoomed-in view of icIEF electropherograms of ipilimumab (Yervoy) under (a) native condition with 4% Pharmalyte pH 3-10, (b) denaturing condition with 3.2 M urea, 4%
Pharmalyte pH 3-10, and (c) denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

Figure S18 Zoomed-in view of icIEF electropherograms of tocilizumab (Actemra) under **(a)** native condition with 4% Pharmalyte pH 3-10, 4 mM arginine, **(b)** denaturing condition with 3.2 M urea, 4% Pharmalyte pH 3-10, and **(c)** denaturing condition with 3.2 M urea, 2% Pharmalyte pH 3-10 and 2% Pharmalyte pH 8-10.5 mixture.

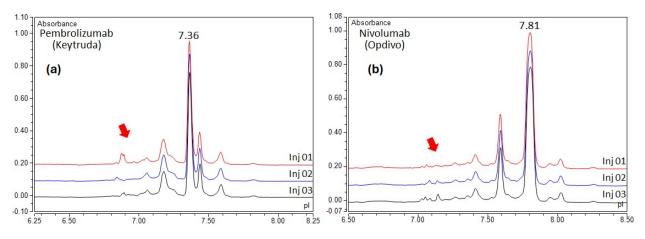


Fig. S19 icIEF electropherograms of therapeutics mAbs (a) pembrolizumab (Keytruda) and (b) nivolumab (Opdivo)

Note: The arrow indicates non-reproducible spikes in the acidic region of the electropherograms, possibly due to protein precipitation.

(Experimental conditions: 0.35% methyl cellulose, 4% Pharmalyte pH 3-10, 4 mM arginine, mAb concentration 0.6 mg/mL, focusing time 8 min at 3kV)

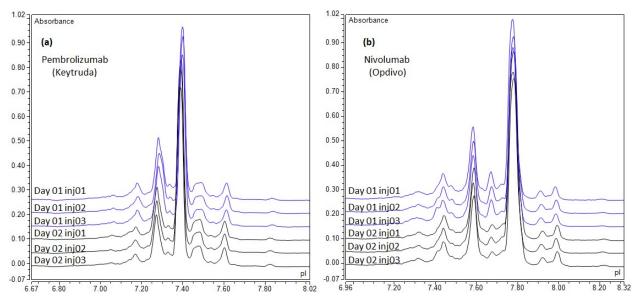


Fig. S20 icIEF electropherograms of therapeutics mAbs (a) pembrolizumab (Keytruda) and (b) nivolumab (Opdivo)

(Experimental conditions: 0.35% methyl cellulose, 4% Pharmalyte pH 3-10, mAb concentration 0.6 mg/mL, focusing time 10 min at 3kV)

	pI Values (References: 5,19,20)	Observed Main Peak pI				
mAbs		Native icIEF	Denaturing icIEF Pharm. 3-10	Denaturing icIEF Pharmalyte 3-10 and 8-10.5		
Eculizumab (Soliris)	6.1	6.00	6.12	5.99		
Panitumumab (Vectibix)	6.8	6.70/6.77*	6.74/6.83*	6.22/6.29*		
Pembrolizumab (Keytruda)	7.6	7.36	7.33	6.54		
Omalizumab (Xolair)	7.3	7.53	7.47	6.64		
Nivolumab (Opdivo)	8.0	7.81	7.76	7.14		
Bevacizumab (Avastin)	8.3	8.21	8.18	7.64		
Adalimumab (Humira)	8.9	8.73	8.70	8.39		
Denosumab (Prolia)	8.9	8.69	8.64	8.28		
Pertuzumab (Perjeta)	9.0	8.93	8.84	8.58		
Ipilimumab (Yervoy)	9.2	9.01	8.96	8.93		
Tocilizumab (Actemra)	9.2	9.22	9.15	9.10		

Table S3 Main peak pIs of the 11 therapeutic mAbs

*Panitumumab can show two main peaks due to formation of disulfide isoforms (**Reference:** A. Resemann, L. Liu-Shin, G. Tremintin, A. Malhotra, A. Fung, F. Wang, G. Ratnaswamy and D. Suckau, *MAbs*, 2018, **10**, 1200–1213)

mAbs	Native icIEF		Denaturing icIEF Pharm. 3-10		Denaturing icIEF Pharmalyte 3-10 and 8-10.5				
	% Acidic	% Main	% Basic	% Acidic	% Main	% Basic	% Acidic	% Main	% Basic
Eculizumab (Soliris)	18.30	55.53	26.17	16.85	56.19	26.96	19.37	54.61	26.02
Panitumumab (Vectibix)	9.79	74.74*	15.47	19.20	67.81*	12.99	17.39	76.09*	6.52
Pembrolizumab (Keytruda)	31.55	47.01	21.46	23.14	59.34	17.52	25.72	54.94	19.33
Omalizumab (Xolair)	11.95	79.67	8.37	11.47	80.78	7.74	13.55	77.55	8.90
Nivolumab (Opdivo)	37.11	57.61	5.26	32.89	62.19	4.93	35.59	55.48	8.91
Bevacizumab (Avastin)	37.97	57.38	4.65	41.03	54.53	4.45	38.93	56.66	4.44
Adalimumab (Humira)	25.82	50.96	23.23	17.09	59.81	23.11	20.56	54.79	24.65
Denosumab (Prolia)	28.27	56.36	15.38	23.70	66.04	10.26	25.79	65.45	8.74
Pertuzumab (Perjeta)	34.02	61.01	4.97	25.01	71.10	3.89	26.03	69.52	4.45
Ipilimumab (Yervoy)	32.59	64.24	3.17	42.47	54.12	3.41	36.43	59.40	4.17
Tocilizumab (Actemra)	35.83	55.81	8.37	31.58	60.03	8.39	30.66	61.05	8.29

Table S4 Percentages of acidic, main, and basic species of the 11 therapeutic mAbs

*sum of two main peaks for panitumumab.