Supplementary information

Label-free detection of cytotoxicity effect of cisplatin in human

leukemic cells using Raman spectroscopy in conjunction with

multivariate analysis

Weiwei Chen, ^{*a} Shenghe Weng, ^{*a} Weixiong Zhong, ^a Hao Huang, ^b Chuanhe Yang, ^a Jian Yang, ^a Liangling Ye, ^a Wenshan Chen, ^a Chunge Song, ^a Shiyuan Du, ^a Xiaohu Chen, ^a and Yun Yu^{*b}

^a School of Medical Technology and Engineering, Fujian Health College, Fuzhou, 350101, China. E-mail: wwchen072@163.com; shengheweng3322@163.com

^b College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China. E-mail: yuyunsatan@163.com

For detection, the laser was applied to the entire cell (as shown in Fig. S1). An average Raman spectrum was generated after 10 detections per cell, and a total of 300 cells were divided into 10 groups to obtain a total of 300 average spectra. Specific cellular assay details are shown in Table S1.

Fig.S1 Micrographs of cells treated with 10.5 $\mu mol/L$ cisplatin under white light (a) and laser (b).

Groups	Number of tested	Number of spectral	Average spectrum	Entire cell
	cell per group	detections per cell	used per cell	measurements
0 μmol/L	30	10	\checkmark	\checkmark
3.5 μmol/L	30	10	\checkmark	\checkmark
7.0 μmol/L	30	10	\checkmark	\checkmark
10.5 µmol/L	30	10	\checkmark	\checkmark
14.0 µmol/L	30	10	\checkmark	\checkmark
0 hour	30	10	\checkmark	\checkmark
6 hours	30	10	\checkmark	\checkmark
12 hours	30	10	\checkmark	\checkmark
24 hours	30	10	\checkmark	\checkmark
36 hours	30	10	\checkmark	\checkmark

Table S1. Details of cellular assay

As can be seen in Fig. S2, guanine has a characteristic band at 1303 cm⁻¹ in its Raman spectrum, so the 1303 cm⁻¹ band in Fig. 1 and 4 was assigned to guanine.

Fig. S2 Raman spectrum of guanine.

Code:

x=xlsread('c:/2.xlsx'); y=xlsread('c:/1.xlsx'); [XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress(x,y,20,'cv',10); add=cumsum(100*PCTVAR(2,:)); figure plot(1:20,cumsum(100*PCTVAR(2,:)),'-bo'); xlabel('Number of PLS components'); ylabel('Percent Variance Explained'); figure plot(0:20, (MSE(2,:)),'-bo'); xlabel('Number of PLS components'); ylabel('Estimated mean squared prediction error'); a=XS(:,1:2); b=xlsread('c:/1.xlsx'); test=XS(:,1:2); y_test=xlsread('c:/1.xlsx'); [train,pstrain] = mapminmax(a',-1,1); x1 = train'; [train_labels,pslabels] = mapminmax(b',-1,1); y1=train labels'; [test_w,pstest] = mapminmax(test',-1,1); test1 = test_w'; [test_w_labels,pslabels] = mapminmax(y_test',-1,1); y_test1 = test_w_labels'; [bestacc,bestc,bestg] = SVMcg(y1,x1,-10,10,-10,10,10,1,1,0.5); cmd = ['-c ',num2str(bestc),' -g ',num2str(bestg)]; model = libsvmtrain(y1,x1,cmd); [predict_label, accuracy, decision_values] = libsvmpredict(y_test1, test1, model);