Supporting Information

Highly sensitive voltammetric determination of hydrochlorothiazide using a glassy carbon electrode modified with super P carbon black nanoparticles

Domingos R. Santos-Neto¹, Carlos E. C. Lopes², Gabrielly P. Silva¹, Lizandra N. Castro¹,

João P. C. Silva², Dianderson C. M. Ferreira², Luiz Ricardo G. Silva², Luiza M. F. Dantas^{1,2},

Iranaldo S. da Silva^{1,2*}

¹Chemistry Technology Department, Federal University of Maranhão, 65080-805, São Luís, Maranhão, Brazil.

²Postgraduate Program in Chemistry, Federal University of Maranhão, 65080-805, São Luís, Maranhão, Brazil

Corresponding author:

e-mail: *iranaldo.ss@ufma.br ORCID: 0000-0001-6216-9141

Fig. S1. Nyquist diagram for GCE and SPCB/GCE in 0.1 mol L^{-1} KCl in the presence of 5.0 mmol L^{-1} [Fe(CN)₆]⁻³.

Fig. S2. Cyclic Voltammograms and peak currents obtained in the presence of HCT (0.20 mmol L^{-1}) with (**A** and **B**) GCE and (**C** and **D**) SPCB/GCE and obtained. Measurement parameters: B-R buffer pH=7.0 as supporting electrolyte. $v = 50 \text{ mV s}^{-1}$. $E_{step} = 5 \text{ mV}$.

Fig. S3. (A) LSAdSVs and (B) standardized peak current values obtained during HCT measurements in the presence of a variety of possible interferents (Ca²⁺, Cl⁻, K⁺, Mg²⁺, Na⁺, PO₄²⁻, SO₄²⁻). Measurement parameters: B-R buffer pH=7.0 as supporting electrolyte. v = 50 mV s⁻¹. Estep= 5 mV.

Fig. S4. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (1.0; 2.0; 3.0; 4.0 μ mol L⁻¹) in the tablet A analysis. **(B)** Relationship between peak current in function of the concentration.

Fig. S5. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (1.0; 2.0; 3.0; 4.0 μ mol L⁻¹) in the tablet B analysis. (B) Relationship between peak current in function of the concentration.

Fig. S6. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (5.0; 7.5; 10.0; 12.5 μ mol L⁻¹) in the spiked tea A analysis. (B) Relationship between peak current in function of the concentration.

Fig. S7. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (1.0; 2.0; 3.0; 4.0 μ mol L⁻¹) in the spiked tea B analysis. (B) Relationship between peak current in function of the concentration.

Fig. S8. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (5.0; 7.5; 10.0; 12.5 μ mol L⁻¹) in the spiked tap water analysis. **(B)** Relationship between peak current in function of the concentration.

Fig. S9. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (1.0; 2.0; 3.0; 4.0 μ mol L⁻¹) in the spiked lake water analysis. **(B)** Relationship between peak current in function of the concentration.

Fig. S10. (A) Linear Sweep Voltammograms obtained with SPCB/GCE during consecutive additions of HCT (5.0; 7.5; 10.0; 12.5 μ mol L⁻¹) in the spiked synthetic urine analysis. **(B)** Relationship between peak current in function of the concentration.