Fabrication and properties of temperature-responsive imprinted sensor based on fluorescently-labeled yeast cells via MVL ATRP

Yue Chen¹, Shaokai Du¹, Ailu Cui, Shipeng Jiang, Yuxuan He, Shuhan Yang, Ruyi Ma, Yue Sun*

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

*Corresponding author:

Email: yuesun@lnnu.edu.cn

Postal address: Yue Sun, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

1 These authors contributed equally.

Fig. S1 Schematic of FITC-Yeast synthesis

Fig. S2 Fluorescence spectra of FITC solutions with different concentrations (concentration of FITC solutions from Curve a to Curve j were 2.50, 2.00, 1.50, 1.25, 1.00, 0.75, 0.625, 0.50, 0.3125, 0.25 μmol L⁻¹) (A). Equation of linear regression (B)

 $\label{eq:Fig. S3} \ CV \ curves \ of \ different \ modified \ electrode \ (a-AuNPs/Au, \ b-Ti_3C_2T_x/AuNPs/Au, \ c-AuNPs/Ti_3C_2T_x/AuNPs/Au, \ the \ electrolyte \ solution \ was \ 0.1 \ mol \ L^{-1} \ KCl+5 \ mmol \ L^{-1} \ [Fe(CN)_6]^{3-/4-} in \ PBS)$

Fig. S4 The "on-off" experiment

Fig. S5 The DPV signal response of different modified electrodes: (A) AuNPs/Au, (B) AuNPs/Ti₃C₂T_x/AuNPs/Au, (C) CIPs/AuNPs/Ti₃C₂T_x/AuNPs/Au:a-blank, b-after combining with yeast cell solution (1.0×10⁶ cells mL⁻¹)

Fig. S6 DPV curves of imprinted polymer modified electrode: blank (a), mixed solution (b) and yeast cell (c) detection by CIPs/AuNPs/Ti₃C₂T_x/AuNPs/Au

for the determination of yeast cell^a

Sensor	Analyte	Detection Method	Linear Response	Detection	Reference
			Range	Limit	
			(cells mL ⁻¹)	(cells mL ⁻¹)	
Imprinted polymer-modified		Thermal resistance	1×10 ² - 1×10 ⁷	22	1
screen-printed carbon electrode		method			
Polyurethane imprinted polymer	Yeast	Impedance	3×10^{1} - 1×10^{5}	30	2
	cells	spectroscopy			
Polydopamine imprinted polymer		Chronopotentiometry	1×10 ² - 1.5×10 ²	50	3
CIPs/AuNPs/Ti ₃ C ₂ T _x /AuNPs/Au		DPV	1×10^2 - 1×10^9	11	This Work

^aThe data units are unified for ease of comparison

Table S2 Determination in real samples (n=3)

Analyte	Original Concentration (cells mL ⁻¹)	Added Yeast Cell Concentration (cells mL ⁻¹)	Detected Concentration (cells mL ⁻¹)	Recovery Rate (%)	RSD (%)
Yeast Cells	1.0×10 ⁴	1.0×10^4 2.0×10^4 3.0×10^4	2.08×10^{4} 2.97×10^{4} 4.05×10^{4}	108.0 98.5 101.7	2.03 3.25 2.67

References

1 O. Jamieson, K. Betlem, N. Mansouri, R. D. Crapnell, F. S. Vieira, A. Hudson, et al, Electropolymerised molecularly imprinted polymers for the heat-transfer based detection of microorganisms: A proof-of-concept study using yeast, *Therm. Sci. Eng. Prog.*, 2021, **24**, 100956.

2 W. Stilman, D. Yongabi, S. B. Sichani, F. Thesseling, O. Deschaume, T. Putzeys, et al, Detection of yeast strains by combining surface-imprinted polymers with impedance-based readout, *Sens. Actuators, B*, 2021, **340**, 129917.

3 R. Liang, J. Ding, S. Gao, W. Qin, Mussel-inspired surface-imprinted sensors for potentiometric label-free detection of biological species, *Angew. Chem., Int. Ed.*, 2017, **56**(24), 6833-6837.