Dye-Doped Cellulose Nanocrystals as Novel Dusting Powders for Visualizing Latent Fingerprints

Xu Yao^{1,#}, Guo-Rui Li^{1,#}, , Jiu-Jiang Wang^{2,3,#}, Cheng Tang¹, Da-Wu Li^{2,3,*}, Nan

You^{1,*}, Wei Mao^{1,*}, Zhan-Chao Li^{4,*}, Si-Qi Zhang⁵

(1. College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001; 2. College of Forensic Science, Criminal Investigation Police University of China, Shenyang, Liaoning, 110035, China; 3. Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, Shenyang, Liaoning, 110035, China; 4. Shenyang polytechnic college, Shenyang, 1100451; 5. School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China)
The first three authors contributed equally to this paper

Email: ldw20001980@163.com (D-W Li), mao_maowei @163.com (W Mao), younan_77@163.com (N You), and sylzc2023@163.com (Z-C Li)

Calculation of adsorption capacity

$$q = (C_0 - C_t) V/m$$
 (S1)

where $q \text{ (mg g}^{-1)}$ is the adsorption amounts, $C_0 \text{ (mg L}^{-1)}$ is the initial concentration of dyes, C_t (mg L⁻¹) is the remnant concentration of dyes, V (mL) is the volume of solution and m (g) is the mass of the cellulose nanocrystals.

Figure S1 Appearance of (a) cellulose nanocrystals, (b) phenylfluorone-doped cellulose nanocrystals and (c) curcumin-doped cellulose nanocrystals in daylight, (d) phenylfluorone-doped cellulose nanocrystals irradiation with 365 nm UV-light, and (e) curcumin-doped cellulose nanocrystals irradiation with 254 nm UV-light.

Figure S2 Comparative imaging of the LFPs by the pure curcumin (a and b) with the CDCN

(c and d) under daylight and 254 nm UV-light.