Supporting Information

Electron Donating and Withdrawing Effect Discriminate the Fluorometric Sensing of Phosgene

Anirban Karak^a, Pintu Ghosh^a, Shilpita Banerjee^a, Debasish Mandal^b, Ajit Kumar Mahapatra^{a*}

^a Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India

^bSchool of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India

*Author to whom correspondence should be addressed; electronic mail:

akmahapatra@chem.iiests.ac.in; Tel.: $+91 - 9434508013$

- 1. Comparison between previously reported probe and this work
- 2. Theoretical calculation
- 3. UV-Vis and fluorescence study of the control compound HMBT
- 4. Calculation of detection limit
- 5. NMR Spectroscopy ¹H and ¹³C
- 6. Mass Spectroscopy
- 7. FT-IR Spectroscopy
- 8. Calculation of quantum yield
- 9. References

Structure of the probe	Solvent	Mode of sensing	Application	LOD	Response time	Ref
\overline{M}	Acetonitrile- water $(1:1)$	ICT	Paper-Strip	0.12 μM		$\mathbf 1$
	$CHCl3$ - acetone(1:1)	PET& ICT	Paper-Strip	1.54 nM	50 seconds	$\overline{2}$
O ΝH H_2N	CH ₃ CN	ESIPT	Paper-Strip	0.16 ppm	20 _s	3
CH-NOH	Water/aceton itrile solution	AIE	Paper-Strip	9.3 nM	$30 s$	$\overline{\mathbf{4}}$
'NH OH	CH ₃ CN	PET	Paper-Strip	0.40 μM	$<$ 1 min	5

Table S1: Comparison between previously reported probe and this work

2. Theoretical Calculations:

Table S2: Selected electronic excitation energies (eV), oscillator strengths (f), main configurations, and CI Coefficients of all the complexes. The data were calculated by TDDFT//M062X/6-31+ $G(d, p)$ based on the optimized ground state geometries.

[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] H stands for HOMO and L stands for LUMO.

Table S3: Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Figure S2: Frontier MO diagram with HOMO-LUMO energy gap of HMBT and HMBT-phos.

3. UV-Vis and fluorescence study of the control compound HMBT.

Figure S3: UV-Vis absorption spectra of the probe **HMBT** $(1 \times 10^{-5} M)$ in the solvent CH₃CN $/H₂O$ (1:1, v/v).

Figure S4: Fluorescence spectra of **HMBT** $(1 \times 10^{-5} \text{ M})$ in the solvent CH₃CN/H₂O (1:1, v/v) in the presence of phosgene.

4. Calculation of Limit of detection

The limit of detection (LOD) of TCAO for phosgene was calculated utilizing the general equation $DL = K \times Sb1/S$

Where $K = 2$ or 3 (we take 2 in this case) and Sb1, obtained as 0.033349 is the standard deviation of the blank solution and S is the slope of the calibration curve

Figure S5: Plot of fluorescence intensity vs molar concentration of triphosgene

Figure S6: Fluorescence linear fit (496 nm) plot in the concentration region 0.1-0.45 µM for estimation of limit of detection.

5. NMR Spectra: 1H NMR, 13C NMR:

Figure S7: ¹H NMR of TCA.

Figure S8: ¹³C NMR of TCA.

Figure S9: ¹H NMR of TCAO.

Figure S10: ¹³C NMR of TCAO.

Figure S11. ¹H NMR of the HMBT**.**

6. Mass Spectroscopy:

Figure S12: HRMS mass spectra of the probe TCAO.

Figure S13: HRMS mass spectra of the adduct TCAO-phos.

Figure S14: HRMS mass spectra of the HMBT.

7. FT-IR Spectroscopy:

Figure S15: FT-IR spectroscopy of TCAO**.**

8. Calculation of quantum yield of TCAO in the absence and presence of phosgene.

Here, the fluorescence quantum yield Φ was calculated by using the following equation:

 $\Phi_{\rm x} = \Phi_{\rm s}$ (F_x/F_s) (A_s/A_x) ($\eta_{\rm x}$ ²/ $\eta_{\rm s}$ ²)

Where, X and S indicate the unknown and standard solution respectively, Φ = quantum yield $F =$ Area under the emission curve, A= Absorbance at the excitation wavelength,

η = Refractive index of solvent. Here Φ measurements were performed using fluorescein in ethanol as standard $[\Phi = 0.79]$

 $\eta_s = 1.36$ (for ethanol); $\eta_x = 1.34$ (for acetonitrile)

In the absence of phosgene, the calculated quantum yield (Φ_x) for probe TCAO = 0.043.

where, Φ s = 0.79, $F_x = 4.71 \times 10^8$, $F_s = 4.34 \times 10^8$, $A_s = 0.008$, $A_x = 0.151$.

In the presence of phosgene, the calculated quantum yield $(\Phi_{\rm v})$ for adduct TCAO-phos = 0.155. Where, $\Phi_s = 0.79$, $F_x = 1.38 \times 109$, $F_s = 2.00 \times 10^9$, $A_s = 0.008$, $A_x = 0.178$.

Figure S16: Fluorescence intensity ratio of Final to Initial emission at 496 nm with the addition of excess phosgene in the different solvent ratio.

8. References

1. S. Paul, P. Ghosh and P. Roy, *New Journal of Chemistry*, 2020, *44*, 5784-5791.

.

2. A. Gangopadhyay, and A.K. Mahapatra, *New Journal of Chemistry*, 2019, *43*, 14991-14996.

3. F. Zeng, G. Bao, B. Zhou, and Y. Han, *New Journal of Chemistry*, 2021, *45*, 5631-5636.

4. L. Da-Xue, L. Dan, Z. Liang, X. Yan-Hua, S. Shao-Hui, Z. Bo, L. Rui, Z. Hong-Ling, L. Jian, H. Zhi-Ping and J. Zhi-Gang, *Chemical Communications*, 2022, *58*, 5296-5299.

5. A. Gangopadhyay and A.K. Mahapatra, *New Journal of Chemistry*, 2019, *43*, 11743-11748.

6. K. Maiti, D. Ghosh, R. Maiti, V. Vyas, P. Datta, D. Mandal and D.K. Maiti, *Journal of materials chemistry A*, 2019, *7*, 1756-1767.

7. A. Gangopadhyay, S.S. Ali and A.K. Mahapatra, *ChemistrySelect*, 2019, *4*, 8968-8972.