Supporting Information for:

Turn-On Fluorescence Detection of Carbon Monoxide in Plant Tissues Based on Cu²⁺ Modulated Polydihydroxyphenylalanine Nanosensors

Xiqiong Mu,^{a, b} Yinquan Wang,^b Jian Xu^{a,*} and Fankui Zeng^{a,c,d,*}

^a Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

^b College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China.

^c Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China.

^d Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.

*Corresponding author, E-mail: xujian1980@licp.cas.cn; zengfk@licp.cas.cn

Preparation of PDOA nanoparticles

Firstly, 19.9 mL dihydroxyphenylalanine solution (1 mmol/L) was mixed with 0.1 mL NaOH solution (1 mol/L). The above solution was stirred for 3 h atroom temperature (25 °C). Then, an HCl solution (1 mol/L) was applied to terminate the polymerization reaction. The pH of the final solution was adjusted to about 7.0. Subsequently, the solution was dialyzed

for 24 h to obtain the purified PDOAs nanoparticles. After dialysis, the asprepared PDOAs solution (20 mL) was concentrated and freeze-dried to afford the desired PDOAs as a solid powder (0.068 g). Thus, the concentration of the PDOAs matrix solution was determined to be 3.4 mg/mL. In the following experiments, the PDOAs solution was diluted 10 times to 0.34 mg/mL for all the spectrometric analysis and CO detection.

XPS spectrum of the PDOAs

Figure S1. The high-resolution C1s spectrum of PDOAs.

Figure S2. The high-resolution O1s spectrum of PDOAs.

Figure S3. The high-resolution N1s spectrum of PDOAs.

Excitation-dependent fluorescence of PDOAs

Figure S4. The fluorescence emission spectra of 0.34 mg/mL PDOAs with different excitation wavelength.

Effects of interfering species and pH

Figure S5. Fluorescence intensity response of the PDOAs toward 5.0 μM Cu^{2+} and other interferents.

Figure S6. The fluorescence intensity ratio histogram of 0.34 mg/mL PDOAs in the presence of $3.6 \ \mu M \ Cu^{2+}$ with different pH values.

Figure S7. Fluorescence intensity response of the PDOAs-Cu²⁺ toward 10 μ M CO and other interfering species.

Table S1Comparison of various CO probes.

Method/ probe	Response time (min)	Detection limit (µM)	Reference
Fluorescein derivative/Pd ²⁺	15	0.037	Anal. Chem. 2016, 88, 10648.
Borondipyrromethene/Pd ²⁺	20	0.72	Anal. Chem. 2016, 88, 11154.
3-nitro naphthalimide	45	0.60	Anal. Chem. 2018, 90, 2933.
Nitronaphthalimide derivative	45	0.18	Chem. Res. Toxicol. 2020, 33, 651.
CORM3-NIR	20	0.07	ACS Sens. 2021, 6, 1312.
BODIPY/Pd ²⁺	60	0.5	J. Am. Chem. Soc. 2012, 134, 15668.
Nitro-quinazolinone derivative	30	0.73	Molecules. 2023, 28, 3654.
Salicylaldehyde/Cu ²⁺	2	0.86	Anal. Chem. 2022, 94, 11298.
Benzoxadiazole derivative	30	0.026	Tetrahedron. Lett. 2016, 57, 2927.
PDOAs/Cu ²⁺	5	0.072	this work

Reference

- (1) Qu, Z.; Na, W.; Nie, Y.; Su, X. Anal. Chim. Acta. 2018, 1039, 74-81.
- (2) Zhang, L.; Zhang, X.; Hu, B.; Shen, L.; Chen, X.; Wang, J. Analyst 2012, 137, 4974-4980.