Supplementary data

In-situ sorbent formation dispersive solid phase extraction for multi-elemental analysis in petroleum: A new approach using cyclen and magnetic ionic liquid

Hasanain Najm Abed Altuwaijari¹, Mohammad Reza Afshar Mogaddam ^{2, 3,4,*}, Mir Ali Farajzadeh^{1,5,*},

Saeed Mohammad Sorouraddin¹

¹Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

² Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

³ Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan

⁴Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

⁵Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey

* Corresponding author: Professor M.A. Farajzadeh

E-mail address: mafarajzadeh@yahoo.com; mafarajzadeh@tabrizu.ac.ir

Tel.: +98 33393084

Fax: +98 33340191

* Corresponding author: Dr. M.R. Afshar Mogaddam

E-mail address: mr.afsharmogaddam@yahoo.com; Afsharmogaddam@yahoo.com

Preparation of magnetic ionic liquids

For preparation of [BMIM][FeCl₄] and [HMIM][FeCl₄] MILs, 1 mol FeCl₃ and was mixed with [BMIM] Cl and [HMIM]Cl under nitrogen stream and the mixtures were stirred for 12 h. The obtained liquid products were utilized in the extraction procedure. The steps of the MILs preparation were according to a literature [S1].

Fig. S1. Extraction method steps.

Table S1. Mean values of obtained the results by the standard method (ASTM D 5708) and the IS-DSPE-

ICP-MS method.

Cation	Crude sample #1			Crude sample #2		
	ASTM D 5708 standard method	Introduced method	t statistic ^a	ASTM D 5708 standard method	Introduced method	t
	Both samples were analyzed without adding the studied analytes.					
Ni	89.2 ± 0.19	92.4 ± 0.03	1.36	98.6 ± 0.07	103.1 ± 4.3	1.96
V	18.3 ± 0.10	16.5 ± 0.06	1.54	26.4 ± 0.08	24.3 ± 1.2	0.79
	All samples were spiked with the cations at a concentration of 10 ng g ⁻¹ . ^{b)}					
Ni	9.32 ± 0.03	8.96 ± 0.05	1.56	10.61 ± 0.03	11.3 ± 0.07	1.74
V	8.96 ± 0.05	9.63 ± 0.02	1.03	9.85 ± 0.05	10.8 ± 0.13	1.89
a) + Critical = 2.22 for $n = 4$ and $n = 0.05$						

a) t-Critical=2.23 for n=4 and p=0.05

b) The analytes contents were subtracted.

Parameter	Penalty point			
Energy	≤1.5 kWh per sample	1		
Instrumentation	ICP-MS	1		
Sample amount	< 10 mL	1		
Waste	10-100 mL	2		
Cyclohexane	Hazardous	8		
Cyclen		Probably 1		
MIL		0		
Total penalty point		13		
AES		87		

Table S2. Analytical eco-scale values for the introduced method [S2].

References

- [S1] X. Li, Q. Zhou, X. L and S. Zhang, Densities and viscosities of binary mixtures of magnetic ionic liquids 1-alkyl-3-methylimidazolium tetrachloroferrate with ethyl acetate at temperatures (293.15 to 323.15) K. J. Mol. Liq. 2019, 243, 285-292.
- [S2] A. Gałuszka, Z.M. Migaszewski, P. Konieczka and J.Namieśnik, Analytical Eco-Scale for assessing the greenness of analytical procedures, *Trends Anal. Chem.* 2012, 37, 61-72.