Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

1	Electronic Supplementary Material						
2							
3	A CRISPR/Cas12a-based Fluorescent Method for the						
4	Amplified Detection of Total Antioxidant Capacity						
5	Qi Wu [†] , Longyingzi Xie [†] , Lanrui Ma [†] , Xinqi Long [†] , Lei Liu [†] , Aihua Chen [†] , Yongliang Cui [†] , Yaohai						
6	Zhang † , Yue He *,†						
7	[†] Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural						
8	Affairs, Southwest University, Chongqing, 400712, P.R. China; National Citrus Engineering Research						
9	Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China						
10							

11 * To whom correspondence should be addressed. Tel: 86-23-68349603, Fax: 86-2312 68349046, Dr. Yue He, E-mail: <u>yuehe@cric.cn</u>

14 This file contains:

- 15 1. Supporting figures 1-6 with legends
- 16 2. Supporting tables 1-3

18 1. Supporting figures 1-5 with legends

Fig. S2 Assess the effect of metal ions on the *trans*-cleavage activity of Cas12a. The concentrations of Mn^{2+} and Mg^{2+} were 30 μ M. And the concentrations of other metal ions were 60 μ M. Cas12a-crRNA complex, 25 nM; ssDNA-FQ, 500 nM; substrate ssDNA, 20 nM. The error bars were calculated using the standard deviation (SD) of three repeated experiments

- 33
- 34 Fig. S3 (A) TEM images of MnO₂ nanosheets. (B) AFM images of MnO₂ nanosheets and
- 35 height profiles along the white lines overlaid on the AFM images

Fig. S4 Conditions optimization of the proposed FL method. (A) The molar ratio of

repeated experiments

Fig. S5 The FL response intensities of the proposed FL method to Na⁺, K⁺, Mg²⁺, Ca²⁺,
citric acid, tartaric acid, oxalic acid, fructose, glucose, sucrose, Arg, Lys, Gly and AA at a
concentration of 20 mg·L⁻¹. The error bars were calculated using the SD of three repeated
experiments

55 2. Supporting tables 1-3

Oligonucleotide	Sequence (5'→3')			
crRNA	UAAUUUCUACUAAGUGUAGAUUCCUAGUGGUGGGCGAACCC			
substrate ssDNA	GGGTTCGCCCACCACTAGGA			
ssDNA-FQ	FAM-TTATT-BHQ1			

56 Table S1 Oligonucleotide sequences used in this work

Concentration (mg·L ⁻¹)		Data		Average value	RSD/%
20	4595	4466	4646	4569.00	2.03
15	4358	4181	4501	4346.67	3.69
12.5	4146	4156	4051	4117.67	1.41
10	3149	3206	3123	3159.33	1.34
7.5	2416	2382	2579	2459.00	4.28
5	1365	1107	1120	1197.33	12.14
2.5	375.2	483.5	398.5	419.07	13.60
1	175.4	157.4	136.8	156.53	12.34
0.5	72.97	97.02	78.41	82.80	15.23
0.1	54.17	63.25	54.58	57.33	8.94
0	52.02	60.54	58.57	57.04	7.82
Average value					7.53

58 Table S2 The FL intensity of three repeated experiments and the corresponding relative

61 Table S3 Comparison the analytical performance of different fluorescent methods for AA

62 detection

Materials	Linear Range (µM)	Detection Limit (µM)	Reference
BSA-AuNCs	3-50	0.4	1
CrO4 ²⁻ @Cd-MOFs	46.3-591	41.28	2
GQDs-hypochlorite	8-60	1.4	3
RhB@MOF nanocomposite	1-25	0.31	4
CuInZnS QDs@FeOOH	5-60	1.5	5
$DBHM + Cu^{2+}$ sensor	0-500	2.37	6
Cu NPs/N–Ti ₃ C ₂ T _x	5-150	0.437	7
NiNCs/Fe ³⁺ composites	20-200	7.45	8
CA-CDs	5-100	0.15	9
Fe ₃ O ₄ @SiO ₂ @UiO-PBA	5-60	2.5	10
CRISPR/Cas12a-MnO ₂	2.84-70.97	0.23	This work

64 **References:**

- P. Ni, S. Liu, B. Wang, C. Chen, Y. Jiang, C. Zhang, J. Chen and Y. Lu, *Journal of Hazardous Materials*, 2021, 411.
- 67 2. J. N. Xiao, J. J. Liu, M. Y. Liu, G. F. Ji and Z. L. Liu, *Inorganic Chemistry*, 2019, 58, 6167-6174.
- 68 3. M. Wang, J. Chen, C. Liu, J. Qiu, X. Wang, P. Chen and C. Xu, Small, 2017, 13.
- 69 4. L. Guo, Y. Liu, R. Kong, G. Chen, Z. Liu, F. Qu, L. Xia and W. Tan, *Analytical Chemistry*, 2019, 91,
 70 12453-12460.
- 71 5. Y. B. Liu, G. Y. Sun, P. Y. Ma and D. Q. Song, *Talanta*, 2024, 271.
- Q. Meng, J. X. Yao, M. Y. Chen, Y. J. Dong, X. Y. Liu, S. Y. Zhao, R. Qiao, C. B. Bai, C. Q. Qu and
 H. Miao, *Analytica Chimica Acta*, 2023, 1276.
- J. Huang, C. Shen, H. Gu, G. Wang, P. Zhou, X. Liu, K. Yu, Y. Qin, K. Zhou, J. Zhang and Z. Chen,
 ACS Sustainable Chemistry & Engineering, 2023, 11, 17472-17481.
- 76 8. J. Li, N. Yao, X. Zhang and Y. Liu, Dyes and Pigments, 2024, 221.
- 77 9. Z. Lin, Q. Zeng, W. Yao, W. Chen, C. Cai, J. Yang, X. Lin and W. Chen, Food Chemistry, 2024, 437.
- 78 10. T. Wan, Z. Zhang, H. Wang, Y. Yang, H. Wang, J. Zhang, Y. Zeng and L. Li, Spectrochimica Acta
- 79 Part A: Molecular and Biomolecular Spectroscopy, 2024, **305**.
- 80