Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Supplementary material to External quality assurance schemes (EQUASs) and interlaboratory comparison investigations (ICIs) for the human biomonitoring of aromatic amines in urine as part of the quality assurance programme under HBM4EU

Supplementary material to

External quality assurance schemes (EQUASs) and interlaboratory comparison investigations (ICIs) for the human biomonitoring of aromatic amines in urine as part of the quality assurance programme under HBM4EU

Table of contents

List of tables

Suppl. Table 1 Countries and numbers of participants	2
Suppl. Table 2 Final concentrations of the control materials (CMs)	2
Suppl. Table 3 Method information for measuring the homogeneity and stability of aniline and TOL	4
Suppl. Table 4 Method information for measuring the homogeneity and stability of 2,4-TDA, 2,6-TDA,	
MDA, and MOCA	4
Suppl. Table 5 Obtained values of homogeneity measurements (n = 10)	5
Suppl. Table 6 Obtained values of stability measurements (n = 3)	6
Suppl. Table 7 Overview of evaluation scheme, evaluation results and Z-scores	7
Suppl. Table 8 Range of LOQs reported by participants and experts for aromatic amines	11

List of figures

Suppl. Fig. 1 Structures of the analysed aromatic amines in the HBM4EU QA/QC programme	. 13
Suppl. Fig. 2 Number of biomarkers for which quantitative results were reported	. 13
Suppl. Fig. 3 Average of satisfactory results for the evaluable biomarkers in CM _{low} (a) and CM _{high} (b)	. 14
Suppl. Fig. 4 Method features of experts (n = 5) and participants (n = 5) cal = calibration, ISTD = internal	
standard	. 15
Suppl. Fig. 5 Applied instruments and detection techniques by participants (including experts)	. 15

Country	Number of participants
Germany	7
UK	1
France	2
Switzerland	1#

Suppl. Table 1 Countries and numbers of participants

[#]only registered

Suppl. Table 2 Final concentrations of the control materials (CMs)

A nometic emine		Final concentration	(ng/mL)
Aromatic amine _{CM}	Round 1	Round 2	Round 3
TOLlow	0.3	0.3	0.5
TOLhigh	1.5	1.5	2
Anilinelow	2.7#	1.5#	4.4
Anilinehigh	10	10	20
MOCAlow	10	13	13
MOCAhigh	100	120	50
2,4-TDA _{low}	50	52	48
2,4-TDA _{high}	180	180	80
2,6-TDA _{low}	50	48	52
2,6-TDA _{high}	200	220	80
MDAlow	5	5.5	2.5
MDA _{high}	90	95	10

[#]No additional spiking was conducted as the native concentrations in the pooled urine were sufficiently high to reach the range of the expected exposure levels in the general population.

Analytical procedure for testing the control materials used in the QA/QC programme

Determination of aniline and TOL

First, 5 mL of urine was spiked with 30 μ L of the internal standard solution (75.5 μ g/L TOL-D₉ and 742 μ g/L aniline- ${}^{13}C_6$ in ACN) and 1 mL HCl (37%). The sample was hydrolysed for 1 h at 80–85 °C and subsequently cooled in an ice bath, followed by the addition of 750 µL 10M NaOH, 3 mL 0.5M MES buffer (pH 6), and another 500 μ L 10M NaOH. The pH was adjusted to 6.2 \pm 0.2 by adding either 10M NaOH or acetic acid. The sample was then extracted twice on the multi-tube mixer, using 5 mL *n*-hexane for 15 min each time. Phase separation was achieved by centrifugation (10 min, 2200 g, approx. 10 °C). The hexane phase was transferred into a fresh tube through an intermediate Na₂SO₄ filter. The filter was rinsed with 2 mL *n*-hexane. Subsequently, 25 µL pyridine and 50 µL pentafluoropropionic anhydride (PFPA) were added to the combined organic phase for derivatisation, which was carried out in a water bath for 1 h at 80-85 °C. The sample was cooled to room temperature followed by the extraction with 3 mL phosphate buffer (pH 8). The sample was then centrifuged for phase separation (5 min, approx. 2000 g, approx. 10 °C). After that, 200 µL toluene were added to the organic phase, which was then concentrated in a vacuum concentrator to approx. 50-80 µL. The sample was transferred into a vial and analysed by GC-MS (negative chemical ionization). Sample analysis was performed with an Rxi-5MS (30 m, 0.25 mm ID, 0.25 µm df) at an injector temperature of 280 °C, a constant helium flow of 1.1 mL/min, and the following temperature program: initial temperature of 100 °C was held for 1 min. The temperature was then increased to 117 °C at a rate of 3 °C/min, to 200 °C at a rate of 8 °C/min, and further to 300 °C at a rate of 25 °C/min. The source temperature was set to 180 °C, interface temperature was 280 °C, and the solvent delay was 4.5 min. The limits of quantification (LOQ) and detection (LOD) for aniline were 0.200 ng/mL and 0.0667 ng/mL, for TOL 0.0100 ng/mL and 0.00333 ng/mL.

Determination of 2,4-TDA, 2,6-TDA, MDA, and MOCA

100 µL 6 N HCl and 50 µL of the internal standard solution (1 µg/mL 2,4-TDA-13C6, 1 µg/mL 2,6-TDA-¹³C₆, and 0.2 µg/mL 4,4'-MDA-D₈ in H₂O) were added to a 250 µL urine sample, mixed properly and hydrolysed for 4 h at 80 °C. The sample was cooled down, and 500 μ L 1 N NaOH were added before solid phase extraction (SPE). SPE cartridges (Strata XC, 30 mg, 3 mL, Phenomenex Ltd. Deutschland, Aschaffenburg, Germany) were conditioned with 1 mL MeOH and 1 mL water. Afterward loading the sample, the cartridge was washed with 1 mL 0.1 N HCl and 2 mL MeOH. The sample was eluted with $2\times$ 500 µL MeOH/isopropanol/NH4OH (63:17:20), evaporated to dryness using a vacuum concentrator, reconstituted in 250 µL NH₄OAc/ACN (9:1, pH 9.2), and finally analysed by LC-MS/MS. A Gemini C18 column (3 μ m, 3 \times 150 mm, 110 Å, Phenomenex Ltd. Deutschland, Aschaffenburg, Germany) was used for chromatographic separation with a flow rate of 1 mL/min and the following gradient applied: Starting conditions were 10% B; this proportion increased over 30% B over the course of 1 min. Over the next minute, the gradient further increased to 90% B, which was held constant for the next 2 min. The B-content decreased over the course of 1 min to the starting condition of 10 %, under which the column was re-equilibrated for the next 3 min. Injection volume was 5 µL and column oven was kept at 35 °C. The MS was operated in positive-ion mode with the following parameters applied: Collision Gas (CAD) 5, Source Gas 1 (GS1) 45, Source Gas 2 (GS2) 55, Curtain Gas (CUR) 30, Ion Source (IS) 5500, Temperature (TEM) 650, Entrance Potential (EP) 10. The LOQ (and LOD) were as follows: 2,4-TDA 25.0 ng/mL (8.33 ng/mL), 2,6-TDA 25.0 ng/mL (8.33 ng/mL), MDA 0.100 ng/mL (0.0333 ng/mL), MOCA 10 ng/mL (3.33 ng/mL).

ISO17025 accredited		Yes				
Sample preparation	Sample amount extracted	5 mL				
Extraction	pH adjustment	6–6.4				
Extraction	LLE	2×5 mL Hexane (15 min)				
Derivatisation	Reagent	PFPA				
Instrument	Separation	GC				
	Detection	MS single quadrupole				
	Use of internal standard (ISTD)	Yes				
Quantification	Isotopic label	Yes				
Quantification	Moment of addition	Before hydrolysis				
	Response normalised to ISTD	Yes				
Calibration	Matrix-matched	Addition to blank matrix before extraction				
	Multilevel	Yes				
Correction for recovery	No					
Identification criteria	Retention-time tolerance	Identification via retention time of isotopically labelled standard				

Suppl. Table 3 Method information for measuring the homogeneity and stability of aniline and TOL

Suppl. Table 4 Method information for measuring the homogeneity and stability of 2,4-TDA, 2,6-TDA, MDA, and MOCA

ISO17025 accredited		No
Sample preparation	Sample amount extracted	0.25 mL
Extraction	pH adjustment	1
Extraction	SPE	
Derivatisation	No	
Instrument	Separation	HPLC
	Detection	MS triple quadrupole
	Use of internal standard (ISTD)	Yes
Quantification	Isotopic label	Yes
Quantification	Moment of addition	Before hydrolysis
	Response normalised to ISTD	Yes
Calibration	Matrix-matched	Addition to blank matrix before extraction
	Multilevel	Yes
Correction for recovery	No	
Identification criteria	Retention-time tolerance	Identification via retention time of isotopically labelled standard

Aromatic		nd 1	Rou			nd 3	Over all rounds
amine _{CM}	Mean (ng/mL)	RSD (%)	Mean (ng/mL)	RSD (%)	Mean (ng/mL)	RSD (%)	Mean RSD (%)
TOLlow	0.31	3.2	0.29	3.4	0.5	4.0	3.6
TOL _{high}	1.48	2.7	1.4	2.9	1.96	2.0	2.5
Aniline _{low}	2.7	14.8	1.5	13.3	4.4	9.1	12.4
Aniline _{high}	11.8	3.4	9.7	3.1	18.8	2.1	2.9
MOCAlow	13.7	24.8	10.5	21.9	22.1	18.1	21.6
MOCAhigh	138.2	17.5	116	14.4	67.7	13.9	15.3
2,4-TDA _{low}	53.1	8.5	38.1	5.8	41.8	6.0	6.7
2,4-TDA _{high}	195.6	5.0	135.7	4.7	70.2	5.4	5.0
2,6-TDA _{low}	52.3	6.7	46	3.7	47	6.4	5.6
2,6-TDA _{high}	212.9	6.1	205	4.1	74.3	5.8	5.3
MDA _{low}	5.2	5.8	6.6	6.1	2.2	9.1	7.0
MDA _{high}	0.31	3.2	0.29	3.4	0.5	4.0	4.9

Suppl. Table 5 Obtained values of homogeneity measurements (n = 10)

CM = control material; RSD = relative standard deviation

		Round 1			Round 2			Round 3		Over all rounds
Aromatic amine _{CM}	Mean ± Sl	D (ng/mL)	Relative difference	Mean ± Sl	D (ng/mL)	Relative difference	Mean ± Sl	D (ng/mL)	Relative difference	Mean
	$\mathbf{t} = 0 \mathbf{d}$	t = 46 d at -20°C	between day 0 and day 46 (%)	$\mathbf{t} = 0 \mathbf{d}$	t = 60 d at -20°C	between day 0 and day 46 (%)	$\mathbf{t} = 0 \mathbf{d}$	t = 40 d at -20°C	between day 0 and day 46 (%)	relative difference
TOLlow	0.32 ± 0.01	0.30 ± 0.00	6.3	0.29 ± 0.01	0.30 ± 0.02	3.4	0.50 ± 0.02	0.46 ± 0.00	8.0	5.9
TOL _{high}	1.50 ± 0.04	1.39 ± 0.01	7.3	1.40 ± 0.05	1.45 ± 0.02	3.6	2.00 ± 0.02	1.83 ± 0.02	8.5	6.5
Anilinelow	2.8 ± 0.2	3.2 ± 0.2	14.3	1.6 ± 0.3	1.6 ± 0.1	0.0	4.6 ± 0.2	4.3 ± 0.3	6.5	6.9
Anilinehigh	11.5 ± 0.2	11.3 ± 0.2	1.7	10.1 ± 0.3	9.9 ± 0.1	2.0	18.8 ± 0.0	18.4 ± 0.5	2.1	1.9
MOCAlow	16.6 ± 2.2	13.9 ± 2.9	16.3	12.2 ± 4.6	7.6 ± 0.6	37.7	21.1 ± 0.7	17.5 ± 4.6	17.1	23.7
MOCAhigh	145.7 ± 39.6	144.3 ± 18.8	1.0	107.1 ± 6.8	104.4 ± 17.2	2.5	63.0 ± 0.6	63.2 ± 13.6	0.3	1.3
2,4-TDA _{low}	52.5 ± 1.4			39.2 ± 2.5	42.2 ± 2.2	7.7	42.2 ± 2.7	41.7 ± 0.5	1.2	4.4
2,4-TDA _{high}	186.7 ± 6.7	184.7 ± 9.7	1.1	141.7 ± 2.9	149.3 ± 6.4	5.4	71.2 ± 4.1	70.9 ± 2.9	0.4	2.3
2,6-TDA _{low}	54.8 ± 2.0	50.5 ± 3.4	7.8	45.2 ± 2.0	46.3 ± 5.4	2.4	44.2 ± 2.0	47.8 ± 3.8	8.1	6.1
2,6-TDA _{high}	204.3 ± 10.0	203.0 ± 3.6	0.6	209.3 ± 10.0	225.7 ± 7.6	7.8	72.8 ± 5.2	75.9 ± 0.9	4.3	4.2
MDAlow	5.1 ± 0.6	5.8 ± 0.5	13.7	6.8 ± 0.5	6.9 ± 0.3	1.5	2.4 ± 0.3	2.5 ± 0.3	4.2	6.5
MDA _{high}	101.1 ± 6.8	95.0 ± 7.0	6.0	104.0 ± 6.1	113.7 ± 3.2	9.3	10.2 ± 0.3	11.0 ± 0.7	7.8	7.7

Suppl. Table 6 Obtained values of stability measurements (n = 3)

SD = standard deviation

		Evaluati	on scheme			E	valuation r	results				Z-scores	
Aromatic amine	R	СМ	Number of P (including E)	Evaluation as	A (ng/mL)	Uncertainty of A or of C when A was not available (%)	C (ng/mL)	RSD _{experts} (%)	Study RSD _R (%)	$\frac{\mathcal{C}-A}{A}(\%)$	Satis (%)	Quest (%)	Unsat (%)
	1	low	4 (3)	EQUAS	0.32	2.2	0.30	8.4	11.0	-6%	4 (100%)	0 (0%)	0 (0%)
	1	high	4 (3)	EQUAS	1.40	2.1	1.32	8.1	12.5	-6%	4 (100%)	0 (0%)	0 (0%)
TOL		low	5 (3)	EQUAS	0.28	1.0	0.29	3.7	9.0	4%	5 (100%)	0 (0%)	0 (0%)
	2	high	5 (3)	EQUAS	1.36	1.1	1.33	4.3	8.1	-2%	5 (100%)	0 (0%)	0 (0%)
	2	low	6 (3)	EQUAS	0.54	4.9	0.55	18.3	33.0	2%	5 (83.3%)	0 (0%)	1 (16.7%)
	3	high	6 (3)	EQUAS	1.75	3.4	1.61	12.7	18.1	-8%	5 (83.3%)	1 (16.7%)	0 (0%)
		low	6 (3)	_	—	2.7	—	10.1	17.7	_	94.4%	0%	5.6%
TOL mean	1–	high	6 (3)	—	-	2.2	_	8.4	12.9	—	94.4%	5.6%	0%
TOL mean	3	low and high	6 (3)	-	-	2.5	-	9.25	15.3	-	94.4%	2.8%	2.8%
	1	low	4 (3)	np	na	na	na	na	na	na	na	na	na
	1	high	4 (3)	np	na	na	na	na	na	na	na	na	na
Aniline	2	low high	5 (3) 5 (3)	np	na	na	na	na	na	na	na	na	na
Amme		low	5 (3)	np np	na na	na na	na na	na na	na na	na na	na na	na na	na na
	3	high	5(3)	EQUAS	15.5	5.9	17.5	22.2	22.5	13%	5 (100%)	0 (0%)	0 (0%)
		low	5 (3)	—	—	_	-	-	na	-	na	na	na
Aniline	1–	high	5 (3)	_	_	_	_	_	22.5	_	100%	0%	0%
mean	3	low and high	5 (3)	-	-	-	-	-	22.5	-	100%	0%	0%

Suppl. Table 7 Overview of evaluation scheme, evaluation results and Z-scores

	-	Evaluati	ion scheme			E	valuation r	esults				Z-scores	
Aromatic amine	R	СМ	Number of P (including E)	Evaluation as	A (ng/mL)	Uncertainty of A or of C when A was not available (%)	C (ng/mL)	RSD _{experts} (%)	Study RSD _R (%)	$\frac{\mathcal{C}-A}{A}(\%)$	Satis (%)	Quest (%)	Unsat (%)
	1	low	8 (4)	ICI	na	6.0	8.5	_	59.0	na	6 (75%)	1 (12.5%)	1 (12.5%)
	1	high	8 (4)	EQUAS	107.6	6.0	72.9	21.8	42.7	-32%	5 (62.5%)	2 (25%)	1 (12.5%)
MOCA		low	8 (3)	ICI	na	14.8	13.3	-	39.3	na	7 (87.5%)	1 (12.5%)	0 (0%)
	2	high	8 (3)	EQUAS	127.2	3.6	130.1	13.7	16.1	2%	8 (100%)	0 (0%)	0 (0%)
	3	low	9 (5)	EQUAS	9.3	3.8	9.6	14.8	59.0	3%	8 (89%)	0 (0%)	1 (11%)
	3	high	9 (5)	EQUAS	42.7	6.5	40.6	25.4	44.5	-5%	8 (89%)	0 (0%)	1 (11%)
		low	9 (5)	_	_	8.2	_	-	52.4	—	83.8%	8.3%	7.8%
MOCA	1–	high	9 (5)	_	_	5.4	_	20.3	34.4	_	83.8%	8.3%	7.8%
mean	3	low and high	9 (5)	-	-	6.8	-	-	43.4	-	83.8%	8.3%	7.8%
	1	low	7 (4)	EQUAS	49.1	1.3	47.1	4.9	34.0	-4%	5 (72%)	1 (14%)	1 (14%)
	1	high	7 (4)	EQUAS	178.3	2.8	147.1	10.4	34.2	-17%	5 (72%)	1 (14%)	1 (14%)
	2	low	8 (3)	ICI	na	9.2	40.7	_	22.2	na	7 (87.5%)	0 (0%)	1 (12.5%)
2,4-TDA	2	high	8 (3)	ICI	na	8.2	138.7	—	17.4	na	7 (87.5%)	0 (0%)	1 (12.5%)
	3	low	8 (5)	EQUAS	41.5	1.5	39.6	7.1	10.0	na	8 (100%)	0 (0%)	0 (0%)
	5	high	8 (5)	EQUAS	69.6	1.1	66.0	5.3	9.7	-5%	8 (100%)	0 (0%)	0 (0%)
		low	8 (5)	_	—	4.0	—	—	22.1	-	86.5%	4.7%	8.8%
2,4-TDA	1–	high	8 (5)	—	-	4.0	-	-	20.4	-	86.5%	4.7%	8.8%
2,4-1DA mean	3	low and high	8 (5)	-	-	4.0	-	-	21.3	-	86.5%	4.7%	8.8%

	-	Evaluati	on scheme			E	valuation r	esults				Z-scores	
Aromatic amine	R	СМ	Number of P (including E)	Evaluation as	A (ng/mL)	Uncertainty of A or of C when A was not available (%)	C (ng/mL)	RSD _{experts} (%)	Study RSD _R (%)	$\frac{\mathcal{C}-A}{A}(\%)$	Satis (%)	Quest (%)	Unsat (%)
	1	low	7 (4)	EQUAS	51.8	3.2	46.4	12.1	37.0	-10%	5 (71%)	0 (0%)	2 (29%)
	-	high	7 (4)	ICI*	na	5.4	196.2	_	40.1	na	5 (72%)	1 (14%)	1 (14%)
	2	low	8 (3)	ICI	na	2.3	45.5	_	25.1	na	6 (75%)	1 (12.5%)	1 (12.5%)
2,6-TDA	-	high	8 (3)	ICI	na	12.3	192.9	_	25.1	na	7 (87.5%)	0 (0%)	1 (12.5%)
	3	low	8 (5)	EQUAS	48.5	2.7	49.1	12.6	122.0	1%	7 (87.5%)	0 (0%)	1 (12.5%)
	5	high	8 (5)	EQUAS	77.4	3.0	78.8	13.8	70.2	2%	7 (87.5%)	0 (0%)	1 (12.5%)
2,6-TDA 1		low	8 (5)	—	—	2.7	-	-	61.4	—	77.8%	4.2%	18.0%
	1–	high	8 (5)	-	_	6.9	_	_	45.1	_	82.3%	4.7%	13.0%
mean	3	low and high	8 (5)	-	-	4.8	-	-	53.3	-	80.1%	4.4%	15.5%
	1	low	8 (4)	EQUAS	4.9	2.9	4.5	12.2	18.0	-8%	8 (100%)	0 (0%)	0 (0%)
	1	high	8 (4)	EQUAS*	95.2	1.7	80.7	6.3	24.8	-15%	7 (87.5%)	1 (12.5%)	0 (0%)
MDA	2	low	9 (3)	ICI	na	9.5	5.6	_	20.1	na	8 (89%)	0 (0%)	1 (11%)
MDA	2	high	9 (3)	ICI	na	7.1	91.7	_	12.4	na	8 (89%)	0 (0%)	1 (11%)
	2	low	10 (5)	EQUAS	2.2	2.0	2.2	9.1	12.0	0%	10 (100%)	0 (0%)	0 (0%)
	3	high	10 (5)	EQUAS	10.3	2.3	9.3	10.9	12.5	-10%	10 (100%)	0 (0%)	0 (0%)
		low	10 (5)	_	—	4.8	—	—	16.7	—	96.3%	0%	3.7%
	1–	high	10 (5)	—	-	3.7	-	-	16.6	—	92.2%	4.2%	3.7%
MDA mean	3	low and high	10 (5)	-	-	4.3	-	-	16.6	-	94.3%	2.1%	3.7%

	Evaluation scheme					Evaluation results						Z-scores		
Aromatic amine	R	СМ	Number of P (including E)	Evaluation as	A (ng/mL)	Uncertainty of A or of C when A was not available (%)	C (ng/mL)	RSD _{experts} (%)	Study RSD _R (%)	$\frac{C-A}{A}(\%)$	Satis (%)	Quest (%)	Unsat (%)	
Aromatic amines mean	1- 3	low and high	_	_	_	_	_	_	_	_	89.9%	3.7%	6.4%	

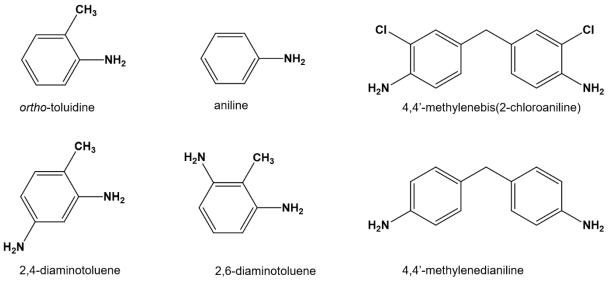
A = assigned value; C = consensus value; CM = control material; E = experts; na = not available; np = no evaluation was possible because EQUAS requirements did not meet the criterion ($u > 0.7 \sigma$ T) and the number of participants was too low to calculate a reliable ICI consensus value; EQUAS* = EQUAS evaluation with results from only 2 experts; ICI* = ICI evaluation with results from only 5 participants; P = participants; Quest = questionable; R = round; RSD_{experts} = relative standard deviation of experts' results; Satis = satisfactory; Study RSD_R= robust relative standard deviation of participants' results; Unsat = unsatisfactory;

	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.010	0.010	0.010	0.010
	highest LOQ (ng/mL)	0.600	0.200	1.000	1.000
	mean LOQ (ng/mL)	0.162	0.102	0.260	0.175
TOL	total number of reported LOQs	5	6	6	17
TOL	Experts	Round 1	Round 2	Round 3	Over all rounds
TOL	Experts lowest LOQ (ng/mL)	Round 1 0.010	Round 2 0.010	Round 3 0.010	Over all rounds 0.010
TOL	4				
TOL	lowest LOQ (ng/mL)	0.010	0.010	0.010	0.010

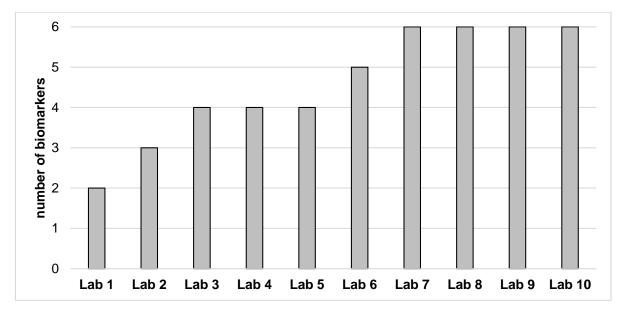
Suppl. Table 8 Range of LOQs reported by participants and experts for aromatic amines

	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.100	0.100	0.100	0.100
	highest LOQ (ng/mL)	2.00	2.00	2.00	2.00
	mean LOQ (ng/mL)	0.960	0.967	1.26	1.06
Aniline	total number of reported LOQs	5	6	5	16
Amme	Experts	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.100	0.100	0.100	0.100
	highest LOQ (ng/mL)	2.00	2.00	2.00	2.00
	mean LOQ (ng/mL)	0.767	0.767	0.767	0.767
	total number of reported LOQs	3	3	3	9

	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050
	highest LOQ (ng/mL)	10.0	10.0	2.00	10.0
	mean LOQ (ng/mL)	2.35	1.78	1.02	1.72
	total number of reported LOQs	8	8	8	24
MOCA	Experts	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050
	highest LOQ (ng/mL)	10.0	10.0	10.0	10.0
	mean LOQ (ng/mL)	2.38	2.37	2.38	2.38
	total number of reported LOQs	5	5	5	15

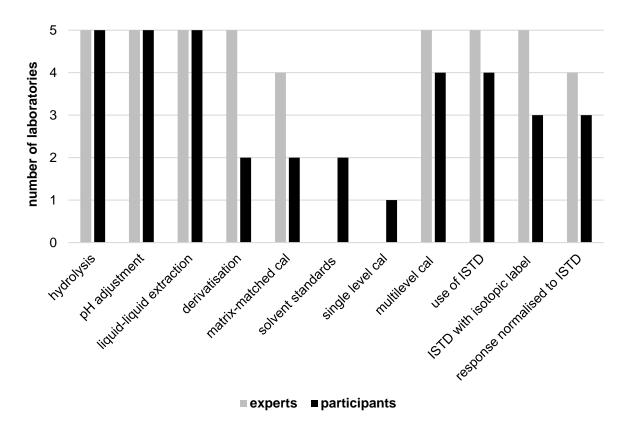

	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050
	highest LOQ (ng/mL)	25.0	25.0	25.0	25.0
	mean LOQ (ng/mL)	4.02	3.64	3.77	3.80
2,4-TDA	total number of reported LOQs	7	8	8	23
2,4-1DA	Experts	Round 1	Round 2	Round 3	Over all rounds
2,4-1DA	Experts lowest LOQ (ng/mL)	Round 1 0.050	Round 2 0.050	Round 3 0.050	Over all rounds 0.050
2,4-1DA	1				
2, 4-1D A	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050

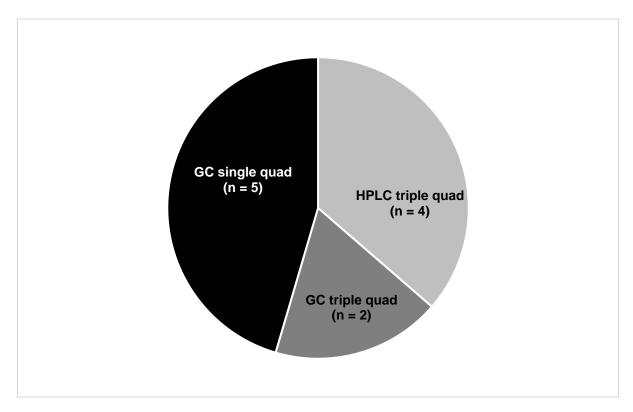
	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050
	highest LOQ (ng/mL)	25.0	25.0	25.0	25.0
	mean LOQ (ng/mL)	4.02	3.64	3.77	3.80
2,6-TDA	total number of reported LOQs	7	8	8	23
2,0-1DA	Experts	Round 1	Round 2	Round 3	Over all rounds
2,0-10A	Experts lowest LOQ (ng/mL)	Round 1 0.050	Round 2 0.050	Round 3 0.050	Over all rounds 0.050
2,0-104	L				
2,0-10A	lowest LOQ (ng/mL)	0.050	0.050	0.050	0.050


Suppl. Table 8 Range of LOQs reported by participants and experts for aromatic amines (continued)

	Participants	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.030	0.030	0.030	0.030
	highest LOQ (ng/mL)	1.00	1.00	1.00	1.00
	mean LOQ (ng/mL)	0.496	0.353	0.507	0.453
MDA	total number of reported LOQs	8	9	10	27
MDA	Experts	Dound 1	D	D 12	o 1 1
	Experts	Round 1	Round 2	Round 3	Over all rounds
	lowest LOQ (ng/mL)	0.030	0.030	0.030	Over all rounds 0.030
	<u>+</u>				
	lowest LOQ (ng/mL)	0.030	0.030	0.030	0.030

Supplementary Figures


Suppl. Fig. 1 Structures of the analysed aromatic amines in the HBM4EU QA/QC programme


Suppl. Fig. 2 Number of biomarkers for which quantitative results were reported

Suppl. Fig. 3 Average of satisfactory results for the evaluable biomarkers in $CM_{low}(a)$ and $CM_{high}(b)$

Suppl. Fig. 4 Method features of experts (n = 5) and participants (n = 5) cal = calibration, ISTD = internal standard

Suppl. Fig. 5 Applied instruments and detection techniques by participants (including experts)