SUPPLEMENTARY MATERIAL

Label-free Impedimetric analysis of microplastics dispersed in aqueous media polluted by Pb²⁺ ions

Davide Lascari,^a Salvatore Cataldo,^{a, b} Nicola Muratore,^a Giuseppe Prestopino,^c Bruno Pignataro,^a Giuseppe Lazzara, ^{a, b} Giuseppe Arrabito^{* a} and Alberto Pettignano^{* a, b}

a. Dipartimento di Fisica e Chimica – Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy

b. NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy

c. Dipartimento di Ingegneria Industriale, Università degli Studi di Roma "Tor Vergata", Via del Politecnico, 00133 Rome, Italy.

*giuseppedomenico.arrabito@unipa.it; *alberto.pettignano@unipa.it;

Table of Contents

Table S1. q_m values of different types of MPs towards Pb²⁺ ions

Figure S1. EDS spectra

Figure S2. Nyquist plot of blank (DI water)

Table S2. Tentative fitting parameters obtained for blank (DI water)

Figure S3. Calibration curve reporting $(1/R_{dl})$ vs. microplastic concentration

Table S3. Fitting parameters obtained for PS and PS-COOH MPs using circuit 1

Table S4. Fitting parameters obtained for PS and PS-COOH MPs pre- and post- adsorption of Pb²⁺ ions using circuit 1

Table S5. Langmuir and Freundlich isotherm parameters for the Pb²⁺ ions adsorption onto PS* MPs from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, at pH = 5.0 and at T = 298.15 K

Figure S4 Adsorption isotherms of Pb²⁺ ions onto PS (blue triangles) and PS* (red circles) MPs from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, at pH = 5.0 and *T* = 298.15 K, and onto PS* MPs (black squares) from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, SDS 0.1 mmol L⁻¹, at pH = 5.0 and *T* = 298.15 K. The experimental data were fitted with Langmuir (continuous line) and Freundlich (dotted line) isotherm models

Figure S5. Micrograph of PS* MPs

Table S1. q_m values of different types of MPs towards Pb²⁺ ions.

MPs	Ø (mm) ª	рН	$\boldsymbol{q}_m^{ ext{b}}$	Refs
PE c	0.29	N.R.	2010	1
PE ^d	<5	5	13600	1
PE c	~4	5	0.191	1
PE c	N.R.	6.3	2360	1
PE c	0.074	5	600	1
PE c	0.2867	5	2230	2
PE ^e	2-6	6.5	2.74	1
LDPE ^f	3	7.5	1038	1
LDPE ^g	<0.28	6.5	590	1
LDPE ^h	<0.28	6.5	283	1
CPE ^c	<0.28	6.5	1110	1
PLA ^b	0.6 - 0.8	5	94	3
PLA ^f	0.6 - 0.8	5	1060	3
PMMA ^c	0.0063	5	4790	2
PMMA ^c	0.006	N.R.	4210	1
PS c	N.R.	N.R.	2940	1
PS ⁱ	10-4	N.R.	160	1
PS ¹	10-4	N.R.	200	1
PS ^m	0.074	N.R.	190	1
PS ⁿ	10-4	N.R.	140	1
PPc	3	N.R.	1570	1
PPc	0.007-0.15	5	1990	2
PPc	0.85	5	1720	2
PPc	N.R.	6.3	5550	1
PPc	0.085	N.R.	1570	4
PPc	<0.28	6.5	1250	1
PPc	<0.28	6.3	1900	4
PPc	0.074	6.5	800	1
PPc	N.R.	6.3	4930	1
CPE ^c	<0.28	6.5	1110	1
PLA ^b	0.6 - 0.8	5	94	3

^a particle diameter of MPs; ^b expressed in μ g g⁻¹; ^c MPs who did not undergo any treatment; ^d naturally aged MPs; ^e MPs sonicated before performing the experiments; ^f MPs treated with oxidizing agents; ^g MPs with low crystallinity index; ^h MPs with high crystallinity index; ⁱ MPs washed and frozen before performing the experiments; (PE = PolyEthylene, LDPE = Low-Density PolyEthylene, CPE = Chlorinated PolyEthylene, PLA = PolyLactic Acid, PMMA = PolyMethyl MethAcrylate, PP = PolyPropylene)

Figure S1. EDS spectra (before and after baseline correction) in the spectral region relative to the transitions towards the L shell (L α and L β) specific to **(a)** Pb²⁺ adsorbed on PS MPs and **(b)** Pb²⁺ adsorbed PS-COOH MPs. The numbers reported for each spectrum are the q_e values.

Figure S2. Nyquist spectrum showing the real (Z') and imaginary (-Z'') impedance components as a function of the frequency for a bare graphite screen-printed electrode in DI water. The line represents fits to the experimental data using the circuit schematized in the inset.

Table S2. Tentative fitting parameters obtained for EIS of blank (DI water).

Figure S3. Calibration curve reporting $(1/R_{dl})$ vs. PS or PS-COOH concentration using circuit 2 (reported in the inset) for **(a)** PS and **(b)** PS-COOH suspensions.

PS concentration (% w/v)	CPE1 (µOhm)	R _{dl} (KOhm)	C _{dl} (pF)	W (µOhm)
0.01 % w/v	0.33 ± 0.03	109 ± 6	210 ± 13	2 ± 0.2
	(N = 0.813 ± 0.003)			
0.02 % w/v	0.24 ± 0.02	93 ± 4	210 ± 13	10 ± 1
	(N = 0.798 ± 0.003)			
0.1 % w/v	0.30 ± 0.01	21 ± 4	266 ± 16	76 ± 8
	(N = 0.944 ± 0.009)			
0.2 % w/v	0.52 ± 0.01	8.8 ± 0.2	336 ± 10	30 ± 2
	(N = 0.892 ± 0.009)			
0.67 % w/v	0.59 ± 0.02	3.36 ± 0.08	386 ± 19	71 ± 7
	(N = 0.898 ± 0.009)			
PS-COOH concentration (% w/v)	CPE1 (µOhm)	R _{dl} (KOhm)	C _{dl} (pF)	W (µOhm)
0.0026 % w/v	0.77 ± 0.09	150 ± 9	552 ± 40	6.2 ± 0.5
	(N = 0.94 ± 0.06)			
0.005 % w/v	0.72 ± 0.05	80 ± 3	405 ± 20	12 ± 1
	(N = 0.92 ± 0.03)			
0.0104 % w/v	0.70 ± 0.05	47± 2	413 ± 21	21 ± 2
	(N = 0.92 ± 0.03)			
0.026 % w/v	0.69 ± 0.04	18.5 ± 0.5	459 ± 23	63 ± 6
	(N = 0.92 ± 0.04)			
0.052 % w/v	(N = 0.92 ± 0.04) 0.55 ± 0.02	8.3 ± 0.4	340 ± 10	290 ± 30

Table S3. Fitting parameters obtained for PS and PS-COOH MPs using circuit 1.

Table S4. Fitting parameters obtained for PS and PS-COOH MP_s pre- and post- Pb²⁺ ions adsorption using circuit 1.

MP sample	CPE1 (µOhm)	R _{dl} (KOhm)	C _{dl} (pF)	W (µOhm)
PS (q _e = 0) ^a	0.26 ± 0.05	73 ± 5	566 ± 45	130 ± 13
	$(N = 0.90 \pm 0.06)$			
PS (q _e = 480)	0.26 ± 0.16	105 ± 9	557 ± 45	7 ± 1
	(N = 0.94 ± 0.07)			
PS (q _e = 780)	0.24 ± 0.15	130 ± 10	567 ± 40	7 ± 1
	(N = 0.94 ± 0.07)			
PS-COOH (q _e = 0)	0.43 ± 0.14	214 ± 16	480 ± 33	4.4 ± 0.5
	(N = 0.94 ± 0.13)			
PS-COOH (q _e = 420)	0.40 ± 0.16	235 ± 19	462 ± 32	4 ± 0.5
	(N = 0.93 ± 0.13)			
PS-COOH (q _e = 1380)	0.42 ± 0.16	307 ± 21	470 ± 33	3.1 ± 0.4
	(N = 0.95 ± 0.16)			

^a in μg g⁻¹.

Table S5. Langmuir and Freundlich isotherm parameters for the Pb²⁺ ions adsorption onto PS* MPs from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, at pH = 5.0 and at T = 298.15 K.

Langmuir model				
q m ^b	<i>K</i> _L ^c	R ²		
2100 ± 600	0.05 ± 0.02	0.9680		
198 ± 11	0.7 ± 0.1	0.9783		
535 ± 68	0.12 ± 0.03	0.9703		
Freundlich model				
<i>K</i> _F ^d	n	R ²		
121 ± 23	1.4 ± 0.2	0.9637		
99 ± 11	4 ± 1	0.9367		
76 ± 9	1.8 ± 0.2	0.9771		
	qmb 2100 ± 600 198 ± 11 535 ± 68 K _F d 121 ± 23 99 ± 11 76 ± 9	Langmuir model q_m^b K_l^c 2100 ± 600 0.05 ± 0.02 198 ± 11 0.7 ± 0.1 535 ± 68 0.12 ± 0.03 Freundlich model K_r^d n 121 ± 23 1.4 ± 0.2 99 ± 11 4 ± 1 76 ± 9 1.8 ± 0.2		

^a with Pb²⁺ solution containing SDS 0.1 mmol L⁻¹; ^b μ g g⁻¹; ^c L mg⁻¹; ^c L^{1/n} g⁻¹ μ g mg^{-1/n}

Figure S4. Adsorption isotherms of Pb²⁺ ions onto PS (blue triangles) and PS* (red circles) MPs from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, at pH = 5.0 and T = 298.15 K, and onto PS* MPs (black squares) from aqueous solutions containing NaNO₃ 0.1 mol L⁻¹, SDS 0.1 mmol L⁻¹, at pH = 5.0 and T = 298.15 K. The experimental data were fitted with Langmuir (continuous line) and Freundlich (dotted line) isotherm models.

Figure S5. Micrograph of PS* MPs (grid scale div. 1 mm)

References

- Gao, X.; Hassan, I.; Peng, Y.; Huo, S.; Ling, L. Behaviors and Influencing Factors of the Heavy Metals Adsorption onto Microplastics: A Review. *J. Clean. Prod.* 2021, *319*, 128777. https://doi.org/10.1016/j.jclepro.2021.128777.
- (2) Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Teng, F.; Zhou, C. Surfactant Changes Lead Adsorption Behaviors and Mechanisms on Microplastics. *Chem. Eng. J.* 2021, 405, 126989. https://doi.org/10.1016/j.cej.2020.126989.
- Yu, Y.; Ding, Y.; Zhou, C.; Ge, S. Aging of Polylactic Acid Microplastics during Hydrothermal Treatment of Sewage Sludge and Its Effects on Heavy Metals Adsorption. *Environ. Res.* 2023, *216*, 114532. https://doi.org/10.1016/j.envres.2022.114532.
- Lin, Z.; Hu, Y.; Yuan, Y.; Hu, B.; Wang, B. Comparative Analysis of Kinetics and Mechanisms for Pb(II) Sorption onto Three Kinds of Microplastics. *Ecotoxicol. Environ. Saf.* 2021, 208, 111451. https://doi.org/https://doi.org/10.1016/j.ecoenv.2020.111451.