Supplementary Information

Sulfonated-Polypyrene aniline/Polyaniline Composite Fortified with Cu-GQD@ZIF8 as the Electrochemical Enzymatic Urea Biosensor

Taşkın Çamurcu^a, Vildan Şanko^{b,c}, İpek Ömeroğlu^a, Süreyya Oğuz Tümay^d, Ahmet Şenocak^a*

^aDepartment of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye ^bDepartment of Chemistry, Hacettepe University, Ankara 06800, Türkiye ^cMETU MEMS Center, Ankara, 06530, Türkiye ^dDepartment of Chemistry, Atatürk University, Erzurum 25100, Türkiye

*Corresponding author:

Dr. Ahmet Şenocak

Department of Chemistry, Gebze Technical University, P.O.Box: 141, Gebze 41400, Kocaeli,

Türkiye

E-mail: asenocak@gtu.edu.tr

Telephone: +902626503106

Fig. S1. The MALDI-TOF spectrum of compound 3 (Matrix: DHB).

Fig. S2. The MALDI-TOF spectrum of compound 4 (No matrix).

Fig. S3. The ¹H-NMR spectrum of compound 3 in DMSO-d₆.

Fig. S4. The ¹H-NMR spectrum of compound 4 in DMSO-d₆.

Fig. S5. The ¹H-NMR spectrum of compound 4 in DMSO- d_6/D_2O .

Fig. S6. The ¹³C-NMR spectrum of compound 3 in DMSO- d_6 .

Fig. S7. The ¹³C-NMR spectrum of compound 4 in DMSO-d₆.

Fig. S8. XPS spectrum of Cu-GQD@ZIF8 materials.

Fig. S9. a) Electropolymerization of pyranine aniline compound onto the ITO glass surface with 15 cycles using CV technique, b) SEM image of unmodified ITO glass, c-d) SEM images of electropolymerized PA compound.

Fig. S10. CV voltammograms of bare GCE compared to PA, PANI, GQD@ZIF8, and PA/PANI/Cu-GQD@ZIF8/Urs/GCE carried out in 5.0 mM [Fe(CN)₆]^{3-/4-} a solution containing 0.1 M KCl.

Fig. S11. a) CV responses for different urea concentrations on PA/PANI/Cu-GQD@ZIF8/Urs/GCE b) Close-up view of a plot (a) and c) linear relationship between urea concentrations and peak currents.

Fig. S12. Linear relationship between urea concentrations and peak currents by decreasing peaks on DPV measurement at -0.42V.

Fig. S13. a) Repeatability, b) reusability, and c) lifetime analyses of the PA/PANI/Cu-GQD@ZIF8 sensor.

Fig. S14. The effect of (a) bioanalytes and (b) different concentrations of uric acid on the voltammetric response of PA/PANI/Cu-GQD@ZIF8/urease biosensor to urea.

Fig. S15. GC-MS calibration curve for urea.

	Presented electrochemical method			GC-MS
	Added (µM)	Detected (µM)	Recovery (%)	Detected (µM)
Serum	0	-	-	
	20.0	19.62±1.10	98.10	ND ^a
	40.0	39.22±1.64	98.05	-

 Table S1: Spike/recovery tests for electrochemical determination of urea in serum sample.

a: Not detected.