A simple fluorescent probe for selectively detecting Al³⁺ and F⁻ in

cells and tea plant roots

Didi Hu^{a, 1}, Yingcui Bu^{a, 1}, Mengxiao Liu^a, Fuqing Bai^b, Jingjing Li^b, Longchun Li^a,

Huimei Cai^{b*}, Xiaoping Gan^{a*}

^a School of Materials and Chemistry, Anhui Agricultural University, 230036 Hefei, P.

R. China

^b State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, P.R. China

Corresponding author Fax: +86-551-65786121

E-mail: gan-xp@ahau.edu.cn, chm@ahau.edu.cn

¹, these authors contributed equally to this work and should be considered as co-first authors

Fig. s1: ¹H NMR, ¹³C NMR spectra of intermediate BHMP.

- Fig. s2 (a) Changes of the fluorescence emission of BHMP + Al³⁺ on addition of different common anions (1. SO₄²⁻ 2. SO₃²⁻ 3. CO₃²⁻ 4. NO₃⁻ 5. F⁻ 6. Cl⁻ 7. Br⁻ 8. I⁻ 9. S²⁻ 10. S₂O₃²⁻ 11. CH₃COO⁻ 12. PO₄³⁻ 13. HPO₄²⁻). (b) Changes of the fluorescence intensity following the addition of F⁻ at different concentrations to the BHMP+Al³⁺.
- Fig. s3 (a) Job's plot between **BHMP** and Al^{3+} in CH_3CN . (b) Benesi-Hilderbrand plot of **BHMP** with Al^{3+} in CH_3CN .
- **Fig. s4** Fluorescence response time of **BHMP** to Al³⁺ in CH₃CN.
- Fig. s5 HOMO, LUMO, and energy gap ($\Delta E = E_{HOMO} E_{LUMO}$) of **BHMP** in Enol and Keto form calculated using the B3LYP function with 6-311G(d) basis set.
- **Fig. s6** the pH stability(a) of **BHMP** in PBS with different pH values and kinetic stability(b) in different solvents.
- Fig. s7 MTT assays of Hela cells treated with **BHMP** at different concentrations for 24 h.
- Table s1 the crystallographic data of BHMP
- Table s2 Comparison of parameters between BHMP and other reported probes for Al^{3+} detection
- Scheme s1 the synthetic routes of target compound BHMP.

Fig. s1 ¹H NMR and ¹³C NMR spectra of intermediate BHMP.

Fig. s2 (a) Changes of the fluorescence emission of BHMP + Al³⁺ on addition of different common anions (1. SO₄²⁻ 2. SO₃²⁻ 3. CO₃²⁻ 4. NO³⁻ 5. F⁻ 6. Cl⁻ 7. Br⁻ 8. I⁻ 9. S²⁻ 10. S₂O₃²⁻ 11. CH₃COO⁻ 12. PO₄³⁻ 13. HPO₄²⁻). (b) Changes of the fluorescence intensity following the addition of F⁻ at different concentrations to the BHMP+Al³⁺.

Fig. s3(a)Job's plot between **BHMP** and Al³⁺ in CH₃CN. (b) Benesi-Hilderbrand plot of **BHMP** with Al³⁺ in CH₃CN.

Fig. s4 Fluorescence response time of BHMP to Al³⁺ in CH₃CN

Fig. s5 HOMO, LUMO, and energy gap ($\Delta E = E_{HOMO} - E_{LUMO}$) of BHMP in Enol and Keto form calculated using the B3LYP/6-311G(d) basis set.

Gaussian 09, b3lyp/6-31g (d,p)

Fig. s6 the pH stability(a) of **BHMP** in PBS with different pH values and kinetic stability(b) of **BHMP** in different solvents.

Table s1: The crystallographic data of BHMP			
Compounds	BHMP		
Empirical formula	C ₁₈ H ₂₀ N ₄ OS		
Formula weight	340.44		
Crystal system	Orthorhombic		
Space group	Pccn		
a[Å]	18.512(3)		
b[Å]	27.014(4)		
c[Å]	7.4371(12)		
α[°]	90		
β[°]	90		
γ[°]	90		
V[Å ³]	3719.2(10)		
Ζ	8		
<i>T</i> [K]	296		
$D_{calcd}[g \cdot cm^{-1}]$	1.216		
F(000)	1440.0		
μ [mm ⁻¹] 0.185			
θrange[°] 2.20-27.53			
Total no. data 4014			
No. unique data	1934		
$R_{ m int}$	0.1512		
R_1	0.0757		
wR_2	0.2646		
GOF	1.052		

Table s2: Comparison of parameters between BHMP and other probes for Al³⁺ detection

Probe	λex (nm)	Medium (v:v)	Practical application	LOD (mol.L ⁻ ¹)	Ref.
Flu-py	523	Tris-HCl	Human cervical carcinoma cells	0.92×10 ⁻⁷ 1.12×10 ⁻⁷	[8]
AHN	425	CH ₃ CN		1.148×10 ⁻⁶ 1.44×10 ⁻⁶	[9]
SPBH	478	DMF:H ₂ O(1:1)	Human non-small cell lung cancer H460 cells	1.1×10 ⁻⁷ 1.47×10 ⁻⁶	[10]
Probe1	540	CH ₃ CN:H ₂ O(9:1)	Water containing surfactant SDBS	3.2×10 ⁻⁸ 7.5×10 ⁻⁷	[12]
H-2L	607	DMSO:H ₂ O(1:5)	A549 cells	1.05×10 ⁻⁸ 0.98×10 ⁻⁸	[18]
BHMP	490	CH ₃ CN	Hela cells Tea plant roots	1.04×10 ⁻⁸	This work

Scheme s1: The synthetic routes of target compound BHMP.

