;

## A DMSO-assisted iridium(III) complex as luminescent "turn-on"sensor for selective detection of L-histidine and bacterial imaging

Xiaojuan Li,<sup>a</sup> Tianqian Jia,<sup>a</sup> Yueyan Wang,<sup>a</sup> Yanyan Zhang,<sup>a</sup> Du Yang,<sup>a</sup> Sicheng Zhai<sup>a</sup> and Shuming Li<sup>\*b</sup>

<sup>a</sup> School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, P.R. China.

<sup>b</sup> Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, P.R. China. E-mail: 1501034@sntcm.edu.cn



Fig. S1 Mass spectrum of Ir1 experimental and calculated spectra of peak.



Fig. S2 Mass spectrum of Ir1-DMSO experimental and calculated spectra of peak with m/z = 691.0523.



Fig. S3 FTIR spectra of DMSO, Ir1, and Ir1-DMSO.



Fig. S4 The PL intensity of Ir1in different volumes of DMSO solvent.



Fig. S5 Relative emission intensity of Ir1-DMSO in presence and absence of L-His and others interfering amino acids (50  $\mu$ M).  $\Delta I = I - I_0$ , I and I<sub>0</sub> represents the PL intensity of Ir1-DMSO with or without various amino acids.



**Fig. S6** Time course of photoluminescence emission intensity of Ir1-DMSO before and after adding L-His.



Fig. S7 FTIR spectra of Ir1-DMSO, L-His, and Ir1-His.



**Fig. S8** Job's plot of fluorescence intensity at 540 nm of Ir1-His *vs.* concentration fraction Ir1-DMSO for a total concentration (Ir1-DMSO + L-His) of 100  $\mu$ M. The intersection of the two linear parts at 0.54.



**Fig. S9** The PL intensity of Ir1-DMSO at 540 nm in the presence and absence of L-His in different pH solutions.

| Materials                                          | Methods                         | Linear range | Detection<br>limit | Ref.         |
|----------------------------------------------------|---------------------------------|--------------|--------------------|--------------|
| o-Phthalaldehyde                                   | Chromatography-<br>Fluorescence | 0.5–25 μM    | 160 nM             | [S1]         |
| lanthanide-based MOF<br>(Eu <sup>3+</sup> @Mn-MOF) | Fluorescence                    | 0-325 μM     | 230 nM             | [S2]         |
| $\{Zn_4\}$ cluster                                 | Fluorescence                    | 5-32.5 µM    | 830 nM             | [S3]         |
| Carbon Dots                                        | Fluorescence                    | 0.05–10 µM   | 35 nM              | [S4]         |
| Nitrogen-doped carbon<br>nanoparticle              | Fluorescence                    | 0.5–60 μM    | 150 nM             | [S5]         |
| Bacterial Cellulose–<br>Based MOF Hybrid           | Fluorescence                    | 0.01–40 µM   | 7 nM               | [S6]         |
| Iridium(III) complexes                             | Fluorescence                    | 2–32.5 µM    | 35 nM              | [S7]         |
| Ir(III) solvent complex                            | Fluorescence                    | /            | 620 nM             | [S8]         |
| Ir(III)-DMSO complex                               | Fluorescence                    | 0.2–10 µM    | 80 nM              | This<br>work |

 Table S1 Comparison of linear range and detection limit for His assay

## **Reference:**

[S1] E. Stampina, A. Tsiasioti, K. Klimatsaki, C. K. Zacharis and P. D. Tzanavaras, *J. Chromatogr. B* 2021, **1173**, 122697.

[S2] J. Xiao, L. Song, M. Liu, X. Wang and Z. Liu, *Inorg. Chem.* 2020, **59**, 6390– 6397.

[S3] J. Li, K. Ma, Y. Yang, H. Yang, J. Lu, D. Li, J. Dou, H. Ma, S. Wang and Y. Li, J. Mater. Chem. C, 2022, 10, 8979–8993.

[S4] W. Lu, Y. Jiao, Y. Gao, J. Qiao, M. Mozneb, S. Shuang, C. Dong and C. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 42915–42924.

[S5] X. Zhu, T. Zhao, Z. Nie, Z. Miao, Y. Liu and S. Yao, *Nanoscale*, 2016, 8, 2205–2211.

[S6] A. F. Kateshali, F. Moghzi, J. Soleimannejad and J. Janczak, *Inorg. Chem.*, 2024, 63, 3560–3571.

[S7] L. Hu, X. Chen, K. Yu, N. Huang, H. Du, Y. Wei, Y. Wu and H. Wang, *Spectrochim. Acta A*, 2021, **262**, 120095.

[S8] H. Wang, B. Xu, H. Chen, D. Li, X. Shen, F. Cai, Y. Xu, L. Zhou and L. Hu, *Inorg. Chim. Acta*, 2020, **511**, 119799.