Fruit Waste-Derived Carbon Dots with Rhodamine B for

Ratiometric Detection of Fe³⁺ and Cu²⁺

Figure list:

Fig.S1(a) The fluorescence intensity of CQDs under different reaction times;The fluorescence intensity of CQDs synthesized under different HT temperatures.

Fig.S2 Zeta potentials of CQDs, RhB and CQDs@RhB.

Fig.S3 PL emission spectra with different excitation wavelengths from 300 to 430 nm.

Fig.S4 (a and c) Fluorescence emission spectra of CQDs solution at different concentrations of Fe^{3+} and Cu^{2+} by 350 nm excitation wavelength. (b and d) Relationship between F/F_0 and the

concentration of Fe^{3+} and Cu^{2+} .

Fig. S5 (a) PL emission spectra with different excitation wavelengths from 300 to 430 nm of the ratiometric probe. (b) UV-vis spectrum of the ratiometric probe.

Fig. S6 Effect of pH values on rhodamine B.

Fig. S7 Relationship between F446/F579 and the concentration of Fe³⁺.

Fig. S8 Relationship between F446/F579 and the concentration of Cu²⁺.

Fig. S9 (a) Fluorescence recovery of ratiometric probes quenched by different concentration of Fe^{3+} and Cu^{2+} ; (b) Fluorescence recovery of ratiometric probes quenched by different concentration of Cu^{2+} and Fe^{3+} ;(c and d) Linear relationship between (F4461-F4462) /(F5791-F5792) and the concentration of Fe^{3+} and Cu^{2+} .

Table list:

Table. S1 F/F_0 under pH 6.0 in the presence of metal ions (0.1 mol·L⁻¹).

Table. S2. spiked recovery of ratiometric probes in different real water samples.

Table. S3. Comparison of the LOD for the detection of Fe3+ and Cu2+ with the earlier literature reports.

Fig.S1(a) The fluorescence intensity of CQDs under different reaction times (concentrations of CQDs were different for each point during measurement). (b) The fluorescence intensity of CQDs synthesized under different HT temperatures (concentrations of CQDs were different for each point during measurement)

Fig.S2 Zeta potentials of CQDs, RhB and CQDs@RhB.

Fig.S3 PL emission spectra with different excitation wavelengths from 300 to 430 nm.

Fig.S4 (a and c) Fluorescence emission spectra of CQDs solution at different concentrations of Fe^{3+} and Cu^{2+} by 350 nm excitation wavelength. (b and d) Relationship between F/F_0 and the concentration of Fe^{3+} and Cu^{2+} .

Fig. S5 (a) PL emission spectra with different excitation wavelengths from 300 to 430 nm of the ratiometric probe. (b) UV-vis spectrum of the ratiometric probe.

Fig. S6. Effect of pH values on rhodamine B.

Fig. S7. Relationship between F_{446}/F_{579} and the concentration of Fe^{3+}

Fig. S8. Relationship between F_{446}/F_{579} and the concentration of Cu^{2+}

Fig. S9 (a)Fluorescence recovery of ratiometric probes quenched by different concentration of Fe^{3+} (0-100µM) and $Cu^{2+}(25\mu M)$ (b)Fluorescence recovery of ratiometric probes quenched by different concentration of Cu^{2+} (0-62.5µM) and $Fe^{3+}(40\mu M)$ (c and d)Linear relationship between $(F_{446}^{1}-F_{446}^{2}) / (F_{579}^{1}-F_{579}^{2})$ and the concentration of Fe^{3+} and Cu^{2+} .

Ions and amino acids	F/F_0			
Fe ³⁺	0.490			
Cu^{2+}	0.635			
Na^+	1.001			
Mg^{2+}	0.905			
Mn^{2+}	0.960			
Ca^{2+}	1.036			
$\mathrm{F}\mathbf{e}^{2+}$	0.802			
Cd^{2+}	0.993			
Ag^+	0.949			

Table. S1. F/F_0 under pH 6.0 in the presence of metal ions (0.1 mol•L⁻¹).

		Original	nal					
lons	Sample	(µM)	Added (µM)	Found (µM)		Recovery (%)	RSD(%)(n=3)	
Fe ³⁺	Tap water	14.52	2.00	2.27	2.25	2.28	113.33	0.67
			4.00	3.97	3.90	4.01	99.00	1.41
			6.00	5.53	5.59	5.51	92.39	0.75
			12.00	12.16	12.09	12.56	102.25	2.07
			24.00	23.89	23.22	23.65	98.28	1.44
	River water	23.58	2.00	2.15	2.21	2.03	106.5	4.30
			4.00	3.59	3.48	3.63	89.17	2.18
			6.00	5.16	5.23	5.19	86.56	0.68
			12.00	12.39	12.15	11.83	101.03	2.32
			24.00	24.87	23.52	22.95	99.08	4.15
Cu ²⁺ -	Tap water	0.35	1.00	1.09	1.07	1.12	109.33	2.30
			2.00	1.87	1.79	1.95	93.50	4.28
			3.00	2.65	2.55	2.79	88.78	4.53
	River water	1.85	1.00	1.14	1.06	1.15	111.67	4.42
			2.00	1.95	1.70	2.09	95.67	10.33
			3.00	2.57	2.47	2.98	89.11	10.11

 Table. S2. spiked recovery of ratiometric probes in different real water samples.

*: Found (μM) This column of data has been deducted from the original concentration.

Matariala	Amelantas	Linear range	LODs (µmol•L ⁻	Dafa	
Waterials	Analytes	$(\mu mol \cdot L^{-1})$ 1)		Keis	
CQDs-C	Fe ³⁺	0~500	5.23	(Ding et al., 2021)	
CQDs	Fe ³⁺	10~100	2.10	(Nagaraj et al., 2022)	
CQDs	Fe ³⁺	0~45	2.5	(Siahcheshm & Heiden, 2023)	
OP-CQDs-FA system	Fe ³⁺	5~80	4.91	(Zhao et al., 2023)	
N-CQDs	Fe ³⁺	3~100	3	(Gu et al., 2022)	
Ni-CQDs	Cu^{2+}	300~900	7.88	(Sun et al., 2023)	
Nitrogen-CQDs	Cu^{2+}	0~280	4.74	(X. Liu et al., 2020)	
N-CQDs	Cu^{2+}	10~1000	0.455	(G. Liu et al., 2018)	
NBU-CDs	Cu^{2+}	0.5~5	0.83	(Cui et al., 2023)	
CQD	Cu^{2+}	0~400	0.42	(Kamarol Zaman et al., 2021)	
ratiometric	Fe ³⁺	0~100	1.75	This work	
probes	Cu^{2+}	0~62.5	0.43	THIS WOLK	

Table. S3. Comparison of the LOD for the detection of Fe³⁺ and Cu²⁺ with the earlier literature reports

References

- Cui, X., Zhang, Y., Chen, Z., Xiao, H., Xiong, R., & Huang, C. (2023). Xylan derived carbon dots composite with PCL/PLA for construction biomass nanofiber membrane used as fluorescence sensor for detection Cu2+ in real samples. *International Journal of Biological Macromolecules*, 252, 126431. https://doi.org/10.1016/j.ijbiomac.2023.126431
- Ding, S., Gao, Y., Ni, B., & Yang, X. (2021). Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. *Inorganic Chemistry Communications*, 130, 108636. https://doi.org/10.1016/j.inoche.2021.108636
- Gu, L., Zhang, J., Yang, G., Tang, Y., Zhang, X., Huang, X., Zhai, W., Fodjo, E. K., & Kong, C. (2022). Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid. *Food Chemistry*, 376, 131898. https://doi.org/10.1016/j.foodchem.2021.131898
- Kamarol Zaman, A. S., Tan, T. L., A/P Chowmasundaram, Y., Jamaludin, N., Sadrolhosseini, A. R., Rashid, U., & Rashid, S. A. (2021). Properties and molecular structure of carbon quantum dots derived from empty fruit bunch biochar using a facile microwave-assisted method for the detection of Cu2+ ions. *Optical Materials*, *112*, 110801. https://doi.org/10.1016/j.optmat.2021.110801
- Liu, G., Li, X., Yu, Z., Ren, P., Yang, F., Wang, J., & Song, Y. (2018). Nonenzymatic detection of glucose based on Cu2+ catalytic oxidation on N-doped carbon quantum dots. *Journal of Physics* and Chemistry of Solids, 123, 344–354. https://doi.org/10.1016/j.jpcs.2018.08.025
- Liu, X., Zhang, S., Xu, H., Wang, R., Dong, L., Gao, S., Tang, B., Fang, W., Hou, F., Zhong, L., & Aldalbahi, A. (2020). Nitrogen-Doped Carbon Quantum Dots from Poly(ethyleneimine) for Optical Dual-Mode Determination of Cu ²⁺ and L -Cysteine and Their Logic Gate Operation. ACS Applied Materials & Interfaces, 12(42), 47245–47255. https://doi.org/10.1021/acsami.0c12750
- Nagaraj, M., Ramalingam, S., Murugan, C., Aldawood, S., Jin, J.-O., Choi, I., & Kim, M. (2022). Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. *Environmental Research*, 212, 113273. https://doi.org/10.1016/j.envres.2022.113273
- Siahcheshm, P., & Heiden, P. (2023). High quantum yield carbon quantum dots as selective fluorescent turn-off probes for dual detection of Fe2+/Fe3+ ions. *Journal of Photochemistry and Photobiology A: Chemistry*, 435, 114284. https://doi.org/10.1016/j.jphotochem.2022.114284
- Sun, S., Sun, Y., Yang, F., Che, S., Zhang, X., Zhang, G., & Li, Y. (2023). Electrochemical synthesis of Ni doped carbon quantum dots for simultaneous fluorometric determination of Fe3+ and Cu2+ ion facilely. *Green Chemical Engineering*, 4(1), 115–122. https://doi.org/10.1016/j.gce.2022.05.004
- Zhao, Q., Mao, H.-H., Xue, M., Feng, X.-Z., Han, G.-C., Chen, Z., & Kraatz, H.-B. (2023). One-pot synthesis of environmentally-friendly carbon quantum dots for "on-off" rapid fluorescent sensing of folic acid, Fe3+, and Ca2+. *Journal of Luminescence*, 263, 120091. https://doi.org/10.1016/j.jlumin.2023.120091