Supplementary materials

Molecularly imprinted polymer on cotton materials as substrates combined with smartphone-based image and distance-based analysis of Cu (II) in water samples

N. Thongkon*^a, Phakamas Maisom^a, Orawan Taewcharoen^a, Wannaree Kamsomjit^a, Supacha Nilsuwan^a, Nattakul Saejan^a and S. Somrak^a,

Fig. S1 Comparison of color intensity after varying the volume of TEOS for the CF-MIP/PAR-Cu (II).

Fig. S2 Comparison of color intensity after varying the volume of APTES for the CF-MIP/PAR-Cu (II).

Fig. S3 Comparison of color intensity after varying the volume of NH₃ for the CF-MIP/PAR-Cu (II).

Fig. S4 Comparison of color intensity after varying reaction time after using vortex (10 min) for the CF-MIP/PAR-Cu (II).

Fig. S5 Comparison of color intensity after varying the concentration of PAR and Cu (II) for the CF-MIP/PAR-Cu (II).

Fig. S6 Comparison of color intensity between NaOH-treated cotton fabric and TTAB/NaOH-treated cotton fabric for the MIP/PAR-Cu (II) modified materials.

Fig. S7 Comparison of color intensity after varying the concentration of HCl for extracting Cu (II) ions from the CF-MIP/PAR-Cu (II) for 5 min.

Fig. S8 Comparison of color intensity after using 1.5 M HCl by varying the extraction time for extracting Cu (II) ions from the CF-MIP/PAR-Cu (II).

Fig. S9 ATR-FTIR spectrum of a) NaOH-treated cotton fabric, b) TTAB/NaOH-treated cotton fabric (CF), c) CF-MIP/PAR-Cu (II), and d) CF-MIP/PAR.

Fig. S10 Comparison of color intensity after varying reaction time and using vortex (10 min) for the CT-MIP/PAR-Cu (II) with the single-channel type.

Fig. S11 Comparison of color intensity after varying the concentration of HCl for extracting Cu (II) ions from the CT-MIP/PAR-Cu (II) with the single-channel type for 5 min.

Fig. S12 Comparison of color intensity after using 1.5 M HCl by varying the extraction time for extracting Cu (II) ions from the CT-MIP/PAR-Cu (II) with the single-channel type.

Fig. S13 UV/Visible absorption spectrum of the CT-MIP/PAR-Cu (II) from using different concentration of PAR and Cu (II) as template molecules.

Fig. S14 UV/Visible absorption spectrum of the four-channel CT-MIP/PAR-Cu (II) from using 0.1mM PAR/50 mg/L Cu (II) at different solution volume.

Fig. S15 UV/Visible absorption spectrum of the four-channel CT-MIP/PAR from using 1.5M HCl at different volume for extraction.

Fig. S16 (A) Graph plotted between Δ color intensity vs. concentration of Cu (II), and (B) Digital images of the CF-MIP/PAR from detection of various concentrations.

Fig. S17 Graph plotted between distance vs. concentration of Cu (II) of the single-channel CT-MIP/PAR.

Fig. S18 Graph plotted between distance vs. concentration of Cu (II) of the four-channel CT MIP/PAR.

Distance (mm)

рН 1.0 pH 2.0 рН 3.0 рН 6.4

(B)

Fig. S19 (A) The effect of pH on the distance measurement from the detection of Cu (II) at a concentration of 0.5 mg/L and the digital images using the four-channel CT-MIP/PAR.