
Supplementary Materials for

EigenRF: an improved metabolomics normalization method 
with scores for reproducibility evaluation on importance 
rankings of different metabolites

Chencheng Tang1,2, Dongfang Huang1, Xudong Xing1,* and Hua Yang1,*

1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
2School of Science, China Pharmaceutical University, Nanjing 211198, China

*Corresponding author. State Key Laboratory of Natural Medicines, China Pharmaceutical University, 
Nanjing 211198, China. E-mail: yanghuacpu@126.com (H.Y.)

Supplementary Information (SI) for Analytical Methods.
This journal is © The Royal Society of Chemistry 2024

mailto:yanghuacpu@126.com


Table S1 The information of ten other normalization methods.

Type of 

method
Name Annotation

Implementation 

with R package
Description

RLSC

Robust locally 

weighted scatter plot 

smoothing.23

NormalyzeMets3

Correct for batch effects by 

applying robust locally weighted 

scatter plot smoothing to quality 

control samples.

RSC
Robust spline 

correction.24
pmp

Fit a smoothing spline to quality 

control samples and apply it to 

normalize the data across 

different batches.

SVR
Support vector 

regression.
MetNormalizer25

Apply support vector regression 

to model and correct for intensity 

drift in metabolomics data based 

on quality control samples.

Method based 

on QC samples

SERRF

Systematic error 

elimination 

employing random 

forest.

SERRF17

Utilize random forest to model 

and correct for systematic errors 

in large-scale untargeted 

lipidomics data based on quality 

control samples.

SIS
Single internal 

standard.26

Apply a single internal standard 

to normalize data, assuming the 

standard's response is indicative 

of overall technical variability.

NOMIS

Optimal 

normalization factor 

based on multiple 

internal standards.27

Determine the optimal 

normalization factor for each 

metabolite by utilizing the 

variability information from 

multiple internal standards and 

their correlation to the 

metabolites.

Method based 

on Internal 

Standard

CCMN

Cross-contribution 

compensation based 

on multiple internal 

standards.28

CCMN28

Use multiple internal standards, 

and apply linear regression and 

PCA to account for cross-

contribution effects.

ber
Linear fitting based 

on position/scale.
ber6

Employ a two-stage regression 

approach to adjust for location 

and scale batch effects.

Method based 

on biological 

samples WaveIC

A

Wavelet transform 

algorithm based on 

independent 

component analysis.

WaveICA19

Utilize wavelet transform and 

independent component analysis 

to remove batch effects by 

decomposing data into multi-

scale components and eliminating 

non-biological variations.



Combination 

method
ISWSVR

Based on the 

combination of B-

MIS and SVR.

Norm-ISWSVR4

Integrate internal standard 

normalization with support vector 

regression to remove systematic 

errors.



Note S1 The information of the other evaluation metrics.
a) RSD of QCs

The relative standard deviation (RSD) of features in QC samples is a commonly used metric to evaluate the 

reproducibility of biomarker discovery studies. Here, we use RSD to represent RSD of QCs. In theory, the signal 

value of a feature on all QC samples should be the same. The higher the RSD, the more unwanted variation and the 

lower the reproducibility. It is generally accepted that the number of features with RSD less than 0.3 should account 

for at least 70% of the total number of features. Additionally, the median RSD of each batch is required to account 

for systematic errors due to batch effects. The ability of the normalization method to eliminate systematic errors can 

be evaluated by comparing the median RSD of each batch before and after normalization. The RSD of the -th feature 𝑖

is calculated as follows:

(13)

𝑅𝑆𝐷𝑖 =
𝑆𝑞𝑐

𝑖

̅𝑦𝑞𝑐
𝑖

,

where ,  and  denote the relative standard deviation, standard deviation, and mean of the -th feature in 𝑅𝑆𝐷𝑖 𝑆𝑞𝑐
𝑖

̅𝑦𝑞𝑐
𝑖 𝑖

the QC samples, respectively.
b) Run plots

The run plot of the feature is represented by a scatter plot, with the signal values as the vertical axis and the 

injection sequence or injection time as the horizontal axis. The run plot of the internal standards and non-differential 

metabolites can effectively visualize the presence of batch effects and signal drift. In theory, the signal values of an 

internal standard should remain consistent across all samples. However, the batch effects may cause variations 

between batches, while signal drift may result in a discernible trend along the injection sequence.
c) PCA plots

Principal component analysis (PCA) is performed on all features to generate PCA plots.

Batch-based PCA plots: The sample points are color-coded based on batch information, illustrating the batch 

effect through the clustering of samples from the same batch.

Group-based PCA plots: The sample points are color-coded based on classification information, allowing for the 

assessment of normalization methods by observing alterations in the clustering of samples within each category 

before and after normalization.
d) OPLS-DA score plots

Orthogonal partial least squares discriminant analysis is performed on all features of biological samples 

corresponding to specific categories, resulting in the generation of score plots. The performance of the normalization 

method can be evaluated by examining the classification shifts of various sample categories before and after 

normalization.
e) ROC and PR curves

The data are stratified and then randomly sampled at a ratio of 7:3 to be divided into a training set and a test set. 

For the training set, differential metabolites are screened according to the criteria of VIP 1, which is derived from ≥  

the OPLS-DA model, and the FDR-adjusted p-value  0.05, which is obtained from the Mann-Whitney U test. A <

classification model is subsequently constructed with differential metabolites as predictors and grouping information 

as response.



Fig. S1 Cumulative frequency distribution of the RSDs of QC samples (A) and the median RSD of each batch of 

QC samples (B) in the BCPUM dataset.





Fig. S2 Run plots of the first feature (A), batch-based PCA plots of the QC, TG, and CG samples (B), group-based 

PCA plots (C), and group-based OPLS-DA score plots (D) in the BCPUM dataset.



Fig. S3 Cumulative frequency distribution of the RSDs of QC samples (A) and the median RSD of each batch of 

QC samples (B) in the GCPPM dataset.







Fig. S4 Run plots of the internal standard for all samples (A), batch-based PCA plots of the QC, A, B, and C 

samples (B), group-based PCA plots (C), and group-based OPLS-DA score plots (D) in the GCPPM dataset.
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Fig. S5 Run plots of the first feature (A), batch-based PCA plots of the QC, CRC, and CE samples (B), group-based 

PCA plots (C), and group-based OPLS-DA score plots (D) in the ACPPM dataset.
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Fig. S6 PR plots for CE samples of the SVM classification model based on the differential metabolites between the 

CRC and CE samples in the ACPPM dataset. In the PR plots, the horizontal axis and the vertical axis are 

respectively the mean recall rate and the mean precision rate of ten-fold cross-validation, and the mean AUC 

values in the legends.
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