High-performance ionic liquid-based microextraction method (ILBME) for the trace determination of paroxetine as a pharmaceutical pollutant in environmental and biological samples

Mehdi Hosseini*a

Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.

Supplementary Information

Table ST Determined physical properties of [Hiomini][C1] $(n-3)$						
Properties	Density, g mL ⁻¹	Refractive	Boiling point,	Melting point,	Freezing	
		index	°C	°C	point, °C	
Value	$1.54{\pm}0.05$	1.35 ± 0.1	274±0.1	52±0.05	-16±0.1	

Table S1 Determined physical properties of [Hibmim][C1] (n=3)

	ital allalysis of	ionic nqui	a or friidin	mjloij		
Compound	Founded (expected) (%)					
	С	Н	Ν	0	Cl	
[Hibmim][Cl]	53.28	8.92	16.90	6.43	14.29	
	(53.32)	(8.95)	(16.96)	(6.46)	(14.31)	

 Table S2 Elemental analysis of ionic liquid of [Hibmim][Cl]

Compound	Founded (expected) (%)					
	С	Н	Ν	Ο	F	C1
{paroxetine-	62.20	7.30	9.68	11.00	3.27	6.00
[Hibmim][Cl]}	(62.43)	(7.34)	(9.71)	(11.09)	(3.29)	(6.14)

Table S3 Elemental analysis of {paroxetine-[Hibmim][Cl} chelate

-					
Entry	interaction	$E_{\rm cmpx}$ (a.u.)	$\Delta E_{\rm int}$ (kJ/mol)	$G_{\rm cmpx}$ (a.u.)	$\Delta G_{\rm int}$ (kJ mol ⁻¹)
1	O3H12	-2208.82346	-56.5375	-2208.22492	3.310756
2	H4N13	-2208.82077	-49.4775	-2208.22778	-4.20605
	N1H12				
3	H2N13	-2208.83161	-77.9196	-2208.23459	-22.0857
4	H π (ring)	-2208.84446	-111.681	-2208.24252	-42.9059
	Cl5H12)				
5	H4015	-2208.84910	-123.847	-2208.24398	-46.7392
	Cl5H12				
6	H2O15	-2208.84219	-105.708	-2208.23707	-28.6074
7	H2F14	-2208.83625	-90.1255	-2208.23834	-31.9235
	Cl5H12				

Table S4 Interaction energies (ΔE_{int}) and Gibbs free energies (ΔG_{int}) for various interactions of **ionic** liquid and paroxetine

Counter ion	Extraction efficiency of paroxetine (%)	1
PF ₆ -	98.6±1.9	
NTF ₂ -	98.2±2.2	
BF_4	89.7±2.0	
DF4	09./±2.0	

<u>**Table S-5** Comparison of various counter ions used as phase</u> separation agents (n=3)

Fig. S1 The synthesis route of the 3-(2-hydroxy-4-(isopropylamino)butyl)-1methylmidazolium chloride ([Hibmim][Cl]).

Fig. S2 The optimized geometries of paroxetine (PX) and the ionic liquid (IL) using the M06-2X functional and the 6-31G(d,p) basis set.

Fig. S3 FTIR spectra for the raw materials and the resulting ionic liquid [Hibmim][Cl].

Fig. S4 HNMR of ionic liquid of [Hibmim][Cl].

Fig. S5 CNMR of ionic liquid of [Hibmim][Cl].

Fig. S6 The optimized geometry of most stable complex between ionic liquid and paroxetine.

Fig. S7 The different values of isosurface δg function and sign ($\lambda 2$) ρ .

Fig. S8 FTIR spectra for (a) paroxetine before extraction and (b) complexed paroxetine after extraction.

Hydrophilic complex of {paroxetine-[Hibmim][Cl]

Hydrophobic complex of {paroxetine-[Hibmim][PF₆]

Fig. S9 The change in polarity from the hydrophilic chelate {paroxetine-[Hibmim][Cl]} to the hydrophobic chelate {paroxetine-[Hibmim][PF₆]}.

Fig. S10 The effect centrifugation time on the extraction efficiency of paroxetine. Investigated conditions: varying centrifugation time, pH of 7.0, 100 mg of IL, 75 mg of PF_6^- , 20,000 mg L⁻¹ of NaCl and centrifugation at 2000 rpm.

Fig. S11 The effect centrifugation speed on the extraction efficiency of paroxetine. Investigated conditions: varying centrifugation speed, pH of 7.0, 100 mg of IL, 75 mg of PF_{6} , 20,000 mg L⁻¹ of NaCl and centrifugation for 1 min. (B) The effect of ionic

Fig. S12 (A) The calibration curve before microextraction, (B) after microextraction, and (C) the estimated LDR.