A distinctive and proficient fluorescent switch for ratiometric recognition of the menacing cyanide ion: Biological studies on MDA-MB-231 cells

Amitav Biswas^a, Saswati Gharami^{*a}, Atanu Maji^a, Subhabrata Guha^b, Gaurav Das^b, Rahul Naskar^a and Tapan Kumar Mondal^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata-700 032, India. E-mail: <u>tapank.mondal@jadavpuruniversity.in ; saswatiju91@gmail.com</u>

^bDepartment of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata- 700026, India.

CONTENTS

1.	¹ H-NMR of BOHB
2.	¹³ C-NMR of BOHB
3.	IR plot of BOHB
4.	HRMS of BOHB
5.	¹ H-NMR of BOHB-CN ⁻
6.	UV Study
7.	Emission Study
8.	Mole ratio plot
9.	Determination of detection limit
10.	pH Study of BOHB and BOHB-CN
11.	Stability study of BOHB and BOHB-CN
12.	Determination of Quantum yield

Table S1: Lifetime decay profile of BOHB and BOHB-CN-

Table S2: The comparison of the present probe (BOHB) with some previous probes for CN⁻

1. ¹H NMR spectrum of BOHB

Figure S1: ¹H NMR (400 MHz) spectrum of the probe (BOHB) in DMSO-d₆

spectrum of BOHB

Figure S2: ¹³C NMR (100 MHz) spectrum of the probe (BOHB) in DMSO-d₆

3. IR plot of BOHB

Calcd. for $C_{21}H_{15}N_3O_4 \ [M + H]^+$ (m/z) = 373.1063; found = 374.1131

Figure S4: HRMS of the probe (BOHB)

Figure S5: ¹H NMR (400 MHz) spectrum of BOHB-CN⁻ in DMSO-d₆

6. UV Study

Figure S6: Absorption spectra of BOHB (10 μ M) upon addition of various other anions (20 μ M) in MeOH/H₂O (1/1, v/v) using HEPES buffered solution at pH=7.2

Figure S7: Color variations upon addition of different anions such as CN^- , Cl^- , F^- , PO_4^{3-} , $H_2PO_4^{-}$, HPO_4^{2-} , HSO_3^{-} , SO_4^{2-} , SO_3^{2-} , S^{2-} , OAc^- , NO_3^{-} , NO_2^{-} and N_3^{-} into the probe solution in MeOH/H₂O (1/1, v/v) in naked eye.

Figure S8: Change of emission spectra of BOHB (10 μ M) after addition of other anions (20 μ M) in MeOH/H₂O (1/1, v/v) using HEPES buffered solution at pH=7.2. $\lambda_{ex} = 368$ nm.

8. Mole ratio plot

Figure S9: Plot of emission intensity at 543 nm of BOHB (10 μ M) depending upon the CN-concentration.

9. Determination of detection limit (LOD)

The limit of detection was determined based on the fluorescence titration. To determine the S/N ratio, the emission intensity of BOHB without CN^{-} was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit (DL) of BOHB for CN^{-} was determined from the following equation: $DL = K \times Sb_1/S$, Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve.

We get the value of Sb₁ as 0.531. Thus using the formula, we get the Detection Limit = $(22.1\pm0.89) \mu$ M i.e. BOHB can detect CN⁻ in this minimum concentration by fluorescence techniques.

Figure S10: The linear response curve of emission intensity at I_{472}/I_{543} of BOHB depending on CN-concentration.

Figure S11: pH titration plot of BOHB and BOHB-CN⁻.

11. Stability study of BOHB and BOHB-CN-

Figure S12: Fluorescence response of BOHB and BOHB-CN⁻ over different days.

12. Determination of Quantum yield of BOHB and BOHB-CN-

For measurement of the quantum yields of BOHB and its reaction product with (BOHB-CN⁻), we recorded the absorbance of the compounds in DMSO solution. The emission spectra were recorded using the maximal excitation wavelengths and the integrated areas of the emission-corrected spectra were measured. The quantum yields were then calculated by comparison with quinine sulfate ($\varphi_s = 0.54$ in 0.5M H₂SO₄) as reference using the following equation:

$$\boldsymbol{\Phi}_{\mathrm{x}} = \boldsymbol{\Phi}_{\mathrm{s}} \times \left(\frac{lx}{ls}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^{2}$$

Where, x & s indicate the unknown and standard solution respectively, Φ is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance and n is the refractive index of the solvent. We calculated the quantum yields of BOHB and BOHB-CN⁻ using the above equation and the values are 0.245 and 0.098 respectively.

Table S1: Lifetime decay profile of BOHB and BOHB-CN-

Methanol (Solvent)	Quantum Yield	τ (ns)	K _r (10 ⁸ x S ⁻¹)	$K_{nr} (10^8 x S^{-1})$
BOHB	0.245	2.33	1.051	3.241
BOHB-CN-	0.098	0.92	1.065	0.021

Table S2: The comparison of the	e present prob	e (BOHB) with some	previous probes for CN ⁻
---------------------------------	----------------	--------------------	-------------------------------------

Probe	Type of response	Response	Solvent System	Detection limit	Referen
		Time			ce
		(min or			

		sec)			
	1			2.1610.7.16	[1]
\bigcap	colorimetric and	< 3	$DMSO/H_2O$,	2.16 ×10 ⁻⁷ M	[1]
	fluorescent	seconds	9/1		
С С С С С С С С С С С С С С С С С С С	ratiometric turn-				
	on				
	Fluorescence	Within 20	Acetonitrile	3.93 ×10 ⁻⁸ M	[2]
	turn-off	seconds			
s-{\vec{v}}	Ratiometric	Within 2	DMSO/H ₂ O,	$2.1(\pm 0.0022) \times 10^{-8}$	[3]
	fluorescence	minutes	1/1	М	
	change				
Meo					
	Ratiometric	Within 22	DMSO/H ₂ O,	$(7.68 \pm 0.29) \times 10^{-8}$	[4]
	fluorescence	seconds	40/60	Μ	
	change				
			A	1 10 7 1 6	
F F F	Fluorescence	-	Acetonitrile	1 ×10-7 M	[5]
	turn-on				
HO ^P Y OCH ₃					
	Ratiometric	Within 1	CH ₂ CN/HEPES	1 89×10-7 M	[6]
	fluorescence (blue	second	in water 7/3	1.09~10 101	[0]
	shift)	second	in water, 775		
	Shirty				
C ·					
	Detieventein	With a 20	DMCO	$(6.56 \pm 0.26) \times 10^{8}$	[7]
	flueroscene	within 20	DMSO	$(0.30 \pm 0.26) \times 10^{-6}$	[/]
	ahanga	seconds		IVI	
	change				
	Fluorescence	_		1.4×10-7 M	٢۶٦
	furn-on	-	7/2	1.4^10 · WI	٢٥١
			115		
	Fluoresseres		тис	$2.4 \times 10^{-8} \text{ M}$	<u>ر</u> 01
	furn-on	-		5.4^10~1VI	[7]

CN NC	Fluorescence	-	H ₂ O/THF,	3.8×10 ⁻⁶ M	[10]
	quenching		9:1		
	Fluorescence	-	DMSO/H ₂ O,	2.95×10 ⁻⁸ M	[11]
	quenching		1/99		
ů o	Fluorometric turn-	15	DMSO/H ₂ O,	2.26×10 ⁻⁷ M	[12]
	off	seconds	1/99		
OL_CN	Fluorometric	-	MeOH/H ₂ O,	1.3×10-7 M	[13]
	(turn-off)		4/1		
	Fluorometric (turn-on)	-	DMSO	7.0×10 ⁻⁸ M	[14]
	Fluorometric	Within 8	DMSO/H ₂ O,	2.65×10 ⁻⁷ M	[15]
	(turn-on)	minutes	8/2		
	Fluorometric	Almost 15	MeOH/H ₂ O,	(22.1±0.89) µM	Present
	(ratiometric)	seconds	1/1		Work

References:

- 1. Z.-Z. Chen, R.-Y. Li, W.-Z. Zhang, Y. Zhang and W.-K. Dong, New J. Chem., 2020, 44, 21038.
- 2. S. Manickam and S. Kulathu Iyer, RSC Adv., 2020, 10, 11791.
- S. Banerjee, M. Mandal, S. Halder, A. Karak, D. Banik, K. Jana and A. K. Mahapatra, *Anal. Methods*, 2022, 14, 3209.

- A. Maji, A. Biswas, A. Das, S. Gharami, K. Aich and T. K. Mondal, *New J. Chem.*, 2023, 47, 11557.
- 5. W. Luo, Z. Yuwen, H. Li and S. Pu, New J. Chem., 2022, 46, 2411.
- S. Munusamy, S. Swaminathan, D. Jothi, V. P. Muralidharan and S. K. Iyer, *RSC Adv.*, 2021, 11, 15656.
- A. Biswas, R. Mukherjee, A. Maji, R. Naskar, K. Aich, N. Murmu and T. K. Mondal, Sens. Diagn., 2024, 3, 1201.
- 8. S. Malkondu, S. Erdemirand and S. Karakurt, Dyes Pigm., 2020, 174, 108019.
- 9. T. S. Reddy, H. Moon and M.-S. Choi, Spectrochim Acta A., 2021, 252, 119535.
- Y. Li, Z. Gu, T. He, X. Yuan, Y. Zhang, Z. Xu, H. Qiu, Q. Zhang and S. Yin, *Dyes Pigm.*, 2020, 173, 107969.
- B. Zuo, L. Liu, X. Feng, D. Li, W. Li, M. Li, M. Huang and Q. Deng, *Dyes Pigm.*, 2021, 193, 109534.
- Q. Zou, J. Du, C. Gu, D. Zhang, F. Tao and Y. Cui, J. Photochem. Photobiol. A. Chem., 2021, 405, 112993.
- 13. R. Mehta and V. Luxami, ChemistrySelect, 2020, 5, 13429.
- K. Satheeshkumar, P. Saravanakumar, A. Kalavathi, K. N. Vennila, K. P. Elango, *Spectrochim Acta A.*, 2023, 302, 123054.
- 15. B. Tavakoli, S. Meghdadi, Z. Salarvand, K. Eskandari, A. Amiri and M. Amirnasr, J. *Photochem. Photobiol. A. Chem.*, 2023, **440**, 114661.