Dual-mode sensing platform for electron spin resonance and UV-vis
 detection of alkaline phosphatase based on Cu-based metal-organic
 frameworks

- 4
- 5 Hui Shi,^{#a} Yuntong Liu,^{#b} Chu Qiu,^b Chunyu Wang,^c Zhimin Zhang,^{ad} Meijun Lu,^a Bo

6 Wang,^b Yuan Tian,^a Daqian Song ^a and Ziwei Zhang *^a

- 7
- 8 aCollege of Chemistry, Jilin Province Research Center for Engineering and
- 9 Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699,
- 10 Changchun 130012, PR China
- ¹¹ ^bCollege of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR

12 China

- 13 °State Key Laboratory of Supramolecular Structure and Materials, Jilin University,
- 14 Qianjin Street 2699, Changchun 130012, PR China
- 15 ^dDepartment of Pharmacy, Changchun Medical College, Changchun 130031, China
- 16
- ¹⁷ [#]These authors contributed equally to this work.
- 18
- 19 Corresponding author: Ziwei Zhang
- 20 Tel.: +86 13610709861; fax: +86 431 85112355
- 21 Email: zzw@jlu.edu.cn

22 **Table of Contents**

23	Figure S1. Variation of the catalytic activity of Cu-MOFs as peroxidase mimi	ic on				
24	temperature (a) and pH of the reaction solution (b).	53				
25	Figure S2. Variation of the ESR signal of ABTS ⁺⁺ with the concentration of PPi (a),					
26	the pH of the reaction solution (b), and the incubation temperature for the cata	ılytic				
27	reaction between Cu-MOFs and its substrates (c).	34				
28	Figure S3. The stability of the ESR signal of ABTS ⁺⁺ . Cu-MOFs, 6 μ g mL ⁻¹ ; H ₂ O ₂ , 6					
29	mmol L ⁻¹ ; ABTS, 4 mmol L ⁻¹ . To prevent the further generation of new ABTS ⁺⁺ by					
30	the catalysis of Cu-MOFs, the sample was kept in the ice bath before ESR					
31	measurement.					
32	S	S5				
33	Figure S4. UV-vis signals at 740 nm in the presence of interfering substances (PO ₄ ³⁻ , HPO ₄ ²⁻					
34	and $H_2PO_4^-$, 250 mmol L ⁻¹ ; Cl ⁻ , CO ₃ ²⁻ and SO ₄ ²⁻ , 100 mmol L ⁻¹ ; BSA, 100 nmol L ⁻¹ ; GO ₂	x and				
35	ChOx, 3000 U	L ⁻¹).				
36	S6					
37	Table S1. Comparison of two kinetic parameters (K_m and V_{max}) of the synthesized Cu-					
38	MOFs with HRP and nanoenzymes reported in the literatures. S7					
39	References	S 8				
40						

S2

42 Figure S1. Variation of the catalytic activity of Cu-MOFs as peroxidase mimic with43 temperature (a) and the pH of the reaction solution (b).

46 Figure S2. Variation of the ESR signal of ABTS⁺⁺ with the concentration of PPi (a),
47 the pH of the reaction solution (b), and the incubation temperature for the catalytic
48 reaction between Cu-MOFs and its substrates (c). In (b) and (c), ALP concentration
49 was set at 18 U L⁻¹.

Figure S3. The stability of the ESR signal of ABTS⁺⁺. Cu-MOFs, $6 \mu g m L^{-1}$; H₂O₂, 6 62 mmol L⁻¹; ABTS, 4 mmol L⁻¹. To prevent the further generation of new ABTS⁺⁺ by 63 the catalysis of Cu-MOFs, the sample was kept in the ice bath before ESR 64 measurement.

81

Figure S4. UV-vis signals at 740 nm in the presence of interfering substances (PO_4^{3-} , 83 HPO_4^{2-} and $H_2PO_4^{-}$, 250 mmol L⁻¹; Cl⁻, CO_3^{2-} and SO_4^{2-} , 100 mmol L⁻¹; BSA, 100 84 nmol L⁻¹; GOx and ChOx, 3000 U L⁻¹).

Catalyst	Substrate	K _m (mmol L ⁻¹)	V _{max} (10 ⁻⁷ mol L ⁻¹ s ⁻¹)	Ref.
	ABTS	71.53	36.5	1
$Au_1Ag_1Pd_1$	H_2O_2	0.011	0.123	
	ABTS	0.14	1.254	1
MgFe ₂ O4	H_2O_2	4.61	1.346	
	ABTS	0.15	1.61	2
Cys–MoS ₂	H_2O_2	8.06	9.92	
	ABTS	0.97	0.63	
raw MoS ₂	H_2O_2	6.74	1.92	2
	ABTS	3.07	149	3
HRP	H_2O_2	0.342	54.6	
G . 1 (0 F	ABTS	4.38	0.713	
Cu-MOFs	H_2O_2	2.38	4.79	This work

87 **Table S1.** Comparison of two kinetic parameters ($K_{\rm m}$ and $V_{\rm max}$) of the synthesized Cu-88 MOFs with HRP and nanoenzymes reported in the literatures.

91 **References:**

- 92 1. J. Kong, J. Zheng, Li Z., J. Huang, F. Cao, Q. Zeng and F. Li, Anal. Bioanal. Chem.,
- 93 2021, **413**, 5383-5393.
- 94 2. J. Yu, D. Ma, L. Mei, Q. Gao, W. Yin, X. Zhang, L. Yan, Z. Gu, X. Ma and Y.
- 95 Zhao, J. Mat. Chem. B, 2018, 6, 487-498.
- 96 3. R. Li, Y. Zhou, L. Zou, S. Li, J. Wang, C. Shu, C. Wang, J. Ge and L. Ling, Sens.
- 97 Actuator B-Chem., 2017, 245, 656-664.