Supporting Information

Rapid Detection of Volatile Organic Compounds Emitted from Plants by Multicapillary Column-Ion Mobility Spectrometry

Vahideh Ilbeigi*1, Younes Valadbeigi2, Martina Zvaríková3, Peter Fedor3, Štefan Matejčík*1

¹Department of Experimental physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia.

²Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran.

³Department of Environmental Ecology, and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.

Corresponding authors' emails: vahideh.ilbeigi@fmph.uniba.sk; stefan.matejcik@fmph.uniba.sk

content	page
Figure S1. Experimental set up for detection of VOCs by Tenax-MCC-IMS	S2
Figure S2. (a) Punching of the blueberry leaves	S3
Figure S3. Photos of aphids and thrips on the blueberry leaves	S4
Figure S4. The mass spectra of the vapour of standard VOCs	S5
Figure S5. The experimental setup for introduction of diluted headspace of the standard VOCs into the glass chamber	S6
Figure S6. Optimization of the sampling time.	S6
Table S1. The vapor pressures of the VOCs studied in this work at 25 °C.	S7

Figure S1. Experimental set up for detection of VOCs by Tenax-MCC-IMS. The VOCs are desorbed from the Tenax surface at 230 °C and entered into a MCC column with temperature of 110 °C via a flow of air with flow rate of 70 ml/min. Then, the separated VOCs are entered into the IMS.

Figure S2. (a) Punching of the blueberry leaves to create holes with diameter of 6 mm. (b) The experimental setup for collecting of the VOCs emitted from the punched leaves of blueberry.

Figure S3. (a) Aphid insects were put on the blueberry leaves and (b) the blueberry plants were stored in a box with lace wall.

Figure S4. The mass spectra of the vapour of pure standards (a) ocimene, (b) methyl jasmonate (MeJA), (c) linalool, (d) caryophyllene, (e) benzene acetonitrile (BeCN), and methyl salicylate (MeSA).

Figure S5. The experimental setup for introduction of diluted headspace of the standard VOCs into the glass chamber with flow rate of 1 ml/min.

Figure S6. Optimization of the sampling time. The peak area of linalool (~0.004 mmHg) at different sampling times (the time of adsorption of linalool on the Tenax adsorbent).

VOC	Vapor pressure
Linalool	0.203 mm Hg ^a
Methyl Salicylate	0.0343 mm Hg ^b
Benzene acetonitrile	0.089 mm Hg ^b
Caryophyllene	0.021 mm Hg °
Methyl Jasmonate	3.4 × 10 ⁻⁴ mm Hg ^b
Ocimene	1.56 mm Hg ^d

Table S1. The vapor pressures of the VOCs studied in this work at 25 °C.

^a M.A. Espinosa Diaz, T. Guetachew, P. Landy, J. Jose, A. Voilley, Experimental and estimated saturated vapour pressures of aroma compounds. *Fluid Phase Equilibria* 1999, 157, 257–270.
^b https://pubchem.ncbi.nlm.nih.gov/
^c M. Hoskovec, D. Grygarova, J. Cvacka, L. Streinz, J. Zima, S. P. Verevkin, B. Koutek. Determining the vapour

pressures of plant volatiles from gas chromatographic retention data. J. Chromtogr. A. 2005, 1083, 161-172 ^d https://www.parchem.com/