1 Quality evaluation of Semen Platycladi samples from

2 different origins by Internal Extractive Electrospray

3 Ionization Mass Spectrometry

4

5 Ning Wang^a, Siyu Xie^a, Peng Liu^a, Leting Wang^a, Chao Zhong^b, Jun Yu^c, Manman Qin^{b*}, Huanwen

6 Chen^{a*}

7

8 ^a Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant

- 9 Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- 10 ^bCenter for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- 11 °Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of
- 12 Medicine, Temple University, Philadelphia, PA, USA.
- 13 * Correspondence:
- 14 Huanwen Chen
- 15 chw8868@gmail.com
- 16 Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant
- 17 Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- 18 Manman Qin
- 19 <u>20142016@jxutcm.edu.cn</u>
- 20 Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China

21 Preparation of standard solutions

22 1. Arachidonic acid standard solution

23 First, 2.2 µL of arachidonic acid standard (density: 0.922 g/mL) was taken and 997.8 µL of 24 methanol was added to prepare 2 mg/mL standard solution. 0.5 mL of 2 mg/mL arachidonic acid standard solution was taken and 0.5 mL of methanol was added to prepare 1 mg/mL standard solution. 25 26 0.2 mL of 1 mg/mL arachidonic acid standard solution was taken and 0.8 mL of methanol was added to 27 prepare 0.2 mg/mL standard solution. 0.5 mL of 0.2 mg/mL arachidonic acid standard solution was 28 taken and 0.5 mL of methanol was added to prepare 0.1 mg/mL standard solution. 0.1 mL of 0.1 29 mg/mL arachidonic acid standard solution was taken and 0.9 mL of methanol was added to prepare 30 0.01 mg/mL standard solution. 0.1 mL of 0.01 mg/mL arachidonic acid standard solution was taken 31 and 0.9 mL of methanol was added to prepare 0.001 mg/mL standard solution. 0.1 mL of 0.001 mg/mL 32 arachidonic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.0001 mg/mL standard solution. The prepared standard solution was stored in the refrigerator at 4 °C for 33 reserve (Table S1). 34

35 2. Linoleic acid standard solution

36 First, 11.1 µL of linoleic acid standard (density: 0.902 g/mL) was taken and 988.9 µL of methanol 37 was added to prepare 10 mg/mL standard solution. 0.8 mL of 10 mg/mL linoleic acid standard solution was taken and 0.2 mL of methanol was added to prepare 8 mg/mL standard solution. 0.625 mL of 10 38 mg/mL linoleic acid standard solution was taken and 0.375 mL of methanol was added to prepare 5 39 mg/mL standard solution. 0.4 mL of 5 mg/mL linoleic acid standard solution was taken and 0.6 mL of 40 methanol was added to prepare 2 mg/mL standard solution. 0.5 mL of 2 mg/mL linoleic acid standard 41 42 solution was taken and 0.5 mL of methanol was added to prepare 1 mg/mL standard solution. 0.1 mL 43 of 1 mg/mL linoleic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.1 mg/mL standard solution. 0.1 mL of 0.1 mg/mL linoleic acid standard solution was taken and 0.9 mL 44 45 of methanol was added to prepare 0.01 mg/mL standard solution. 0.1 mL of 0.01 mg/mL linoleic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.001 mg/mL standard 46 solution. The prepared standard solution was stored in the refrigerator at 4 °C for reserve (Table S1). 47

48 3. Linolenic acid standard solution

49 First, 11.0 µL of linolenic acid standard (density: 0.914 g/mL) was taken and 989 µL of methanol was added to prepare 10 mg/mL standard solution. 0.8 mL of 10 mg/mL linolenic acid standard 50 solution was taken and 0.2 mL of methanol was added to prepare 8 mg/mL standard solution. 0.625 mL 51 52 of 10 mg/mL linolenic acid standard solution was taken and 0.375 mL of methanol was added to 53 prepare 5 mg/mL standard solution. 0.4 mL of 5 mg/mL linolenic acid standard solution was taken and 0.6 mL of methanol was added to prepare 2 mg/mL standard solution. 0.5 mL of 2 mg/mL linolenic 54 55 acid standard solution was taken and 0.5 mL of methanol was added to prepare 1 mg/mL standard solution. 0.1 mL of 1 mg/mL linolenic acid standard solution was taken and 0.9 mL of methanol was 56 added to prepare 0.1 mg/mL standard solution. 0.1 mL of 0.1 mg/mL linolenic acid standard solution 57 58 was taken and 0.9 mL of methanol was added to prepare 0.01 mg/mL standard solution. 0.1 mL of 0.01 mg/mL linolenic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.001 59 mg/mL standard solution. The prepared standard solution was stored in the refrigerator at 4 °C for 60 61 reserve (Table S1).

62 4. Palmitic acid standard solution

First, 2 mg of palmitic acid standard was taken and 1 mL of methanol was added to prepare 2
mg/mL standard solution. 0.5 mL of 2 mg/mL palmitic acid standard solution was taken and 0.5 mL of

methanol was added to prepare 1 mg/mL standard solution. 0.2 mL of 1 mg/mL palmitic acid standard 65 solution was taken and 0.8 mL of methanol was added to prepare 0.2 mg/mL standard solution. 0.5 mL 66 67 of 0.2 mg/mL palmitic acid standard solution was taken and 0.5 mL of methanol was added to prepare 68 0.1 mg/mL standard solution. 0.1 mL of 0.1 mg/mL palmitic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.01 mg/mL standard solution. 0.1 mL of 0.01 mg/mL palmitic 69 acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.001 mg/mL standard 70 71 solution. 0.1 mL of 0.001 mg/mL palmitic acid standard solution was taken and 0.9 mL of methanol 72 was added to prepare 0.0001 mg/mL standard solution. The prepared standard solution was stored in 73 the refrigerator at 4 °C for reserve (Table S1).

74 5. Stearic acid standard solution

75 First, 2 mg of stearic acid standard was taken and 1 mL of methanol was added to prepare 2 mg/mL standard solution. 0.5 mL of 2 mg/mL stearic acid standard solution was taken and 0.5 mL of 76 77 methanol was added to prepare 1 mg/mL standard solution. 0.2 mL of 1 mg/mL stearic acid standard solution was taken and 0.8 mL of methanol was added to prepare 0.2 mg/mL standard solution. 0.5 mL 78 of 0.2 mg/mL stearic acid standard solution was taken and 0.5 mL of methanol was added to prepare 79 80 0.1 mg/mL standard solution. 0.1 mL of 0.1 mg/mL stearic acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.01 mg/mL standard solution. 0.1 mL of 0.01 mg/mL stearic 81 acid standard solution was taken and 0.9 mL of methanol was added to prepare 0.001 mg/mL standard 82 solution. 0.1 mL of 0.001 mg/mL stearic acid standard solution was taken and 0.9 mL of methanol was 83 added to prepare 0.0001 mg/mL standard solution. The prepared standard solution was stored in the 84 refrigerator at 4 °C for reserve (Table S1). 85

- 86
- 87

Table S1. Concentrations of five fatty acid standard solutions. 88

- 89
- 90

Fatty Acid	value/(mg/mL)
arachidonic acid	0.0001, 0.001, 0.01, 0.1, 0.2, 1,2
linoleic acid	0.001, 0.01, 0.1, 1, 2, 5, 8, 10
linolenic acid	0.001, 0.01, 0.1, 1, 2, 5, 8, 10
palmitic acid	0.0001, 0.001, 0.01, 0.1, 0.2, 1, 2
stearic acid	0.0001, 0.001, 0.01, 0.1, 0.2, 1, 2

101 Preparation of standard solutions for GC-MS experiments

102 First, 4.2 µL of triarachidonin standard (density: 0.948 g/mL), 34.6 µL of trilinolein standard (density: 0.925 g/mL), 8.5 µL of trilinolenin standard (density: 0.946 g/mL), 4 mg of tripalmitin 103 standard and 8 mg of tristealin standard was taken and 152.7 µL of n-hexane was added to prepare 104 105 mixed standard solution. This mixed standard solution is used as a high concentration solution. Take 106 0.05 mL of high concentration solution, add 0.15 mL of n-hexane to dilute as medium concentration 107 solution. Take 0.05 mL of medium concentration solution, add 0.15 mL of n-hexane to dilute as low concentration solution. Specific concentrations are shown in Table S2. The prepared standard solution 108 was stored in the refrigerator at 4 °C for reserve. 109

- 110
- 111
- 112
- 113

115

114 Table S2. Concentrations of three fatty acid triglycerides standard solutions

116 - 117 _	Fatty acid triglycerides	value/(mg/mL)				
118	triarachidonin	1.25, 5, 20				
119	trilinolein	10 40 160				
120	umnolem	10, 40, 100				
121	trilinolenin	2.5, 10, 40				
122	tripalmitin	1.25, 5, 20				
123	tristealin	2.5 10 40				
124 _	uisteann	2.3, 10, 40				
125						

126	Table S3. Analytical results of spiked samples by GC-MS $(n = 6)$
127	

	Sample	Sample Added		Recovery	
Sample	background	value	value (mg/mL)	rate/%	RSD/%
	value (mg/mL)	(mg/mL)			
		0.125	1.30	124.3	27.49
arachidome	1.14	0.5	1.55	81.9	10.31
acid		2	2.79	82.7	31.67
	0.08	1	0.99	90.8	8.31
linoleic acid	1.17	4	5.57	109.9	8.31
	1.17	16	19.59	115.1	21.24
	0.11	0.25	0.32	87.2	17.30
linolenic acid		1	1.36	125.8	10.02
		4	3.58	86.8	27.82
	0.09	0.125	0.23	116.0	21.69
palmitic acid		0.5	0.75	131.5	8.28
		2	1.78	84.6	25.64
	0.25	0.25	0.49	95.3	20.71
stearic acid		1	1.41	116.1	7.53
		4	3.39	78.4	26.33

Origin	arachidonic acid	RSD/ %	linoleic acid	RSD/ %	linolenic acid	RSD/ %	palmitic acid	RSD/ %	stearic acid	RSD/ %
	1.43	18.06	0.35	21.69	1.11	23.25	0.14	19.29	0.33	11.90
	1.03		0.32		1.11		0.13		0.38	
	1.27		0.22		0.68		0.13		0.29	
Henan	0.97		0.21		0.68		0.13		0.28	
	1.30		0.21		0.71		0.08		0.29	
	0.85		0.22		0.73		0.09		0.28	

129 Table S4. Results of actual sample analysis by GC-MS (n=6)