Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Support Information

for

Facile preparation of a hydrophilic Eu-based ratiometric

fluorescence nanosensor for Cu²⁺ ion detection and living cells imaging

Moru Zhang, Chunyun Deng, Jing Chen, Shucai Liang*

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of

Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China

*Corresponding authors (chirolab@whu.edu.cn, Shucai Liang)

Fig. S1 H NMR spectrum of PAAC-Eu in DMSO-d₆/D₂O/HCl

Fig. S2 (a) XRD analysis of PAAC-Eu, PAA, EuCl3•6H2O and CCAH, respectively. (b) TEM images of PAAC-Eu.

Fig. S3 TG analysis of PAAC-Eu.

Fig. S4 Fluorescence spectra of PAAC-Eu (---) and CCAH (---) in HEPES buffer solution (pH 7.4) under the excitation

Fig. S5 The effects of pH values on PAAC-Eu luminescence at 406 nm and 618 nm, respectively. (λ_{ex} =350 nm)

Fig. S6 The fluorescence intensities ratios of PAAC-Eu at 406 nm and 618 nm in pH 7.4 of aqueous solution upon

continuous irradiating with a UV lamp. (λ_{ex} =350 nm)

Fig. S7 The Stern-Volmer plot of PAAC-Eu in different concentrations of Cu^{2+} ion aqueous solution.

Fig. S8 The effects of pH values on Cu^{2+} detection. (λ_{ex} =350 nm)

Fig. S9 The effects of reaction time on Cu^{2+} detection. $(\lambda_{ex}{=}350$ nm, pH 7.4)

Fig. S10 Cytotoxicity of PAAC-Eu against the Hela cells.

Fig. S11 XPS survey spectrum of PAAC-Eu-Cu (a), the high-resolution spectra for Cu(II) 2p for PAAC-Eu-Cu(b) and

PAAC-Eu(c) and the high-resolution spectra for Eu(III) 3d(d), C1s (e) and O1s (f) of PAAC-Eu-Cu, reapectively.

Fig. S12 UV-Vis absorbance spectra of PAAC-Eu solution containing the different amounts of Cu²⁺.

Fig. S13 FTIR spectra of PAAC-Eu(-----) and PAAC-Eu-Cu (-----) by KBr method, respectively.

Fig. S14 The "on-off-on" phenomenon of PAAC-Eu fluorescence upon the alternate additions of Cu²⁺ and EDTA.

 $(\lambda_{ex}=350 \text{ nm})$

Table S1 Comparison of PAAC-Eu with several reported Eu-based fluorescence sensors for Cu2+ detection

Sensor	Preparation	Detection	Detection	Linear	DL	Ref.
		mode	media	range		
Eu ³⁺ -BHHCT-BPED	(1) Prepared 4,40-bis (100,100, 100,200,200,300,300-	Fluorescence	Borate buffer	0.01-0.1	3.7 nM	19
	heptafluoro-400,600-hexanedione-600-yl)-chlorosulfo-	quenching	(0.05 M, pH	μМ		
	terphenyl (BHHCT) dipicolylamine (DPA)-containing		7.4, 0.1%			
	N,N-bis(2-pyridyl methyl)ethanediamine (BPED); (2)		CTAB			
	Synthesis of BHHCT-BPED at room temperature in dark					
	for 5 days, and then cooridation with europium(III) for 24					
	h.					
[Eu2(MTBC)(OH)2(D	Solvothermal method in DMF at 100 °C for 12 h with	Fluorescence	DMF:H ₂ O	0-500 mg	17.2 μg L ⁻	20
MF) ₃ (H ₂ O) ₄]·2DMF·	Eu(CH ₃ COO) ₃ , and 4',4',4',4'-methanetetrayltetrakis-	quenching	(1:1, v/v)	L-1	1	
7H ₂ O	[1,1'-biphenyl]-4-carboxylic acid (H4MTBC) as					
	precursors					
CPMFs	Hydrothermal method at 160 °C temperature for 8 hours	Fluorescence	CH ₃ OH:H ₂ O	2-12 μM.	1.42 μM	21
	using 3,5-dinitrosalicylic acid (DNSA), Eu ³⁺) as	quenching	(3 : 1), pH 7.03			
	precursors					
Eu ³⁺ @CAU-11	CAU-11 was synthesized at 150 °C for 12 h using	Fluorescence	DMF	0.05-10	6.2 μM	22
	$AlCl_3 \cdot 6H_2O$ and 4, 4'-sulfonyldibenzoic acid as	ratiometric		mM		
	precursors, and then stirred with Eu^{3+} for 24 h at room					
	temperature					
Eu-PUF-1.5	One-step co-polycondensation reaction	Fluorescence	Water	-	0.28 µM	23
		quenching				
	Colloidal GdVO ₄ :Eu ³⁺ NCs was synthesized at 120 °C	Fluorescence	Water	1-20 µM	80 nM	24
Colloidal	for 12 h using $Gd(NO_3)_3$, $Eu(NO_3)_3$, Na_3VO_4 and	quenching				
GdVO ₄ :Eu ³⁺ @Si	PAA as precursors in ethylene glycol/water, and then					
O ₂ nanocrystals	encapsulated with a uniform layer of ultrathin silica					
	through a sol-gel strategy.					
EuW10/TMAB	EuW10 and TMAB mixed solution was incubated for 1	Fluorescence	Aqueous	0.2-1.0	0.15 μΜ	25
Composite	day at 20.0 ±0.1 °C	quenching	solution	μΜ		
FNP(SDC _{0.05} SDS _{0.95} -	Cl-LEuH was synthesized by a hydrothermal method at					
LEuH-DPA)	90 °C for 12 h; and then SDC/SDS-LEuH was prepare by	Fluorescence ratiometric	water- formamide	100 1000		
	the ion-exchange method; Then $SDC_{0.05}SDS_{0.95}$ -LEuH			100 -1000	4.91 μΜ	26
	was exfoliated into monolayer nanosheets, which was			μινι		
	mixed with DPA.					
PAAC-Eu	One-pot coordination reaction of Eu ³⁺ with commercially	Fluorescence	pH 7.4 of	0-20.0	0.175 μΜ	This
	available poly(acrylic acid) and coumarin-3-carboxylic	ratiometric	HEPES buffer	μΜ		work
	acid at room temperature for 2h.		solution			