A New Stability Indicating HPLC Method with QDa and PDA Detector for The Determination of Process and Degradation Impurities of Ivabradine Including Separation of Diastereomeric N-Oxides

Büşra GÜLŞEN*a, Sıdıka ERTÜRK TOKER^b

^a Istanbul University, Graduate School of Health Sciences, 34116, Istanbul – Turkey

^a Ali Raif İlaç Sanayi, İkitelli Organize Sanayi Bölgesi 10. Cadde No:3/1A, 34306, Başakşehir
/ Istanbul - Turkey

^b Istanbul University, Faculty of Pharmacy, Department of Analytical Chemistry, 34116,
 Istanbul – Turkey

* Corresponding author, E-mail address: <u>busra_gulsen93@hotmail.com</u>

Fig. S1 Molecule structures of IBR, HXY, ACE, DHY and NOX

Fig. S2 UV spectra of HXY, ACE, IBR, DHY, NOX-1 and NOX-2

Fig. S3 Chromatogram of standard solution at 285 nm and M+ data of substances

Fig. S4 Chromatograms of IBR 7.5 mg Film Coated Tablet and its placebo tablets with/without degradation

Supporting Information

Fig. S5 DSC thermogram of synthesized yellowish cyrstals

Туре	Degradant	Condition	Degradant to finish reaction
Alkali Degradation	3 N NaOH (2.5 ml)	70 °C - 6 hours	3 N HCl (2.5 ml)
Acidic Degradation	3 N HCl (2.5 ml)	70 °C - 6 hours	3 N NaOH (2.5 ml)
Oxidative Degradation	30% H ₂ O ₂ (2.5 ml)	70 °C - 6 hours	-
Thermal Degradation*	Temperature	$70 \ ^{\mathrm{o}}\mathrm{C} - 7 \ \mathrm{days}$	-
Photodegradation*	UV Light	1.2 million lux hours – 7 days	-

*They represent solid-state degradations, because sample tablets, placebo tablets and IBR active ingredient were directly subjected to the two during 7 days.

RRT	a	b	c	d	e	f	m/z	RRT	a	b	c	d	e	f	m/z
0.085	-	-	0.048	-	-	-	421.21	0.375*	-	-	-	-	-	-	280.33
0.089	-	-	-	0.026	-	-	309.28	0.386	-	-	-	0.068	-	-	551.34
0.112	-	-	-	0.021	-	-	279.25	0.397	-	-	-	0.077	-	-	535.40
0.120	-	-	-	0.050	-	-	256.97	0.422	-	-	-	0.068	-	-	503.36
0.121	-	-	-	-	0.030	-	363.19	0.446	-	-	-	0.166	-	-	535.37
0.123	-	-	-	0.140	-	-	208.16	0.494	-	-	-	0.105	-	-	501.38
0.128	-	-	-	0.150	-	-	298.25	0.498	-	-	-	0.076	0.033	0.038	485.27
0.136	-	-	0.023	-	-	-	479.27	0.532	-	-	0.395	-	-	-	487.31
0.136	-	-	-	0.038	-	-	293.21	0.539	0.022	0.260	-	0.151	0.029	0.042	455.30
0.151	-	-	-	0.169	-	-	505.33	0.581	-	-	0.046	0.180	-	-	485.32

Table S2 Detailed degradation impurity results (%) of IBR 7.5 mg Film Coated Tablet with M+ base peak data (m/z)

0.151	-	-	0.172		-	-	393.25	0.593	-	_	0.052	-	0.024	0.022	485.33
0.164	-	-	-	0.230	-	-	423.30	0.636	-	0.097	-	-	0.021	-	455.31
0.166	-	-	1.007	-	-	-	487.30	0.691	-	-	1.846	-	-	-	469.32
0.168	-	-	-	1.496	-	-	293.25	0.692	-	-	-	0.299	-	-	501.37
0.168	-	-	-	-	0.026	-	293.16	0.733	-	-	-	2.571	-	-	501.35
0.174	-	-	0.164	-	-	-	487.32	0.717	0.020	0.031	-	-	0.117	0.082	483.30
0.192	-	-	-	0.323	-	-	409.30	0.719	-	-	1.133	-	-	-	469.29
0.196	-	-	0.036	-	-	-	493.28	0.763	-	-	-	-	-	0.018	501.31
0.213	-	8.175	15.574	-	-	-	487.29	0.777*	-	-	-	-	-	-	250.30
0.218	-	-	-	0.160	-	-	505.32	0.808	-	-	-	0.314	-	-	501.37
0.233	-	-	-	0.141	-	-	503.33	0.849	-	-	0.125	-	-	-	487.34
0.237	-	-	-	0.070	-	-	503.29	0.859	-	-	-	0.212	-	-	499.30
0.249	-	-	-	0.060	-	-	433.27	0.907	-	-	-	0.131	-	-	485.32
0.263	-	-	-	0.294	-	-	409.28	1.081*	-	-	-	-	-	-	467.57
0.273	-	-	-	0.617	-	-	503.38	1.155	0.019	-	-	0.500	0.178	0.037	483.27
0.325	-	-	-	0.852	-	-	487.29	1.187*	0.011	-	0.014	3.632	0.101	0.028	485.28
0.326	-	-	1.251	-	-	-	523.33	1.284*	0.022	-	0.011	3.819	0.072	0.030	485.29
0.332	-	-	-	0.729	-	-	487.31	1.551	-	-	3.326	-	-	-	505.34
0.350	-	-	-	0.079	-	-	505.37	1.598	-	-	-	0.194	-	-	455.36

* RRT 0.375 – HXY; RRT 0.777 – ACE; RRT 1.081 – DHY; RRT 1.187 – NOX-1; RRT 1.284 – NOX-2

	Duesenes	N	OX-1	Ň	Samaa		
Solvent	of ppt	Expected Result	Experimental Result	Expected Result	Experimental Result	of ppt	
Methanol	_	942.95	942.96	994.88	994.90	-	
Distilled Water	+	1000.34	1000.34	1078.52	1063.03	NOX-2	
Ethyl Acetate	+	897.96	897.97	956.49	942.17	NOX-2	
Dichloromethane	+	898.16	886.32	956.49	930.58	Both	
Tetrahydrofuran	+	831.98	7.97	890.55	8.45	Both	

Table S3 Solubility study c	of diastereomeric N-Oxides
-----------------------------	----------------------------

Table S4 Physical properties of diastereomeric N-Oxides

Solubility Results (mg ml-1)										
	NOX-1	NOX-2	Descriptive Term							
Methanol	> 942.95	> 994.88	freely soluble							
Distilled Water	> 1000.34	1063.03	freely soluble							
Ethyl Acetate	> 897.96	942.17	freely soluble							
Dichloromethane	886.32	930.58	freely soluble							
Tetrahydrofuran	7.97	8.45	slightly soluble							
Other Physical Properties										
	NO)X-1	NOX-2							
Specific Rotation, $[\alpha]_D^{25}$ (in methanol)	+ 2	+ 22.4 ° + 64.7								
Melting Point	Two sharp peaks were obtained at 115.93 °C and 121.95 °C									

Table S5 Results of specificity parameter

Solution Type	Stan Solut	dard tion ^a	Star Solu	ıdard tions ^b	San Solu	nple ition	Sample + Impurity Spike Solution		Active Ingredient + Placebo + Impurity Spike Solution	
Component	Α	Т	Α	Т	A	Т	Α	Т	Α	Т
HXY	2.304	2.731	2.347	2.609	-	-	2.621	3.066	2.653	3.266
ACE	3.831	4.586	4.210	4.541	-	-	4.352	5.093	4.032	4.608
IBR	4.469	5.098	5.492	5.778	0.069	0.257	0.069	0.245	4.707	5.586
DHY	3.647	3.901	3.635	4.376	-	-	2.302	3.152	3.142	3.778
NOX-1	6.747	7.698	7.912	9.633	-	-	7.153	7.477	7.348	8.743
NOX-2	7.342	8.423	9.414	10.062	-	-	7.39	8.576	8.253	9.299

^A Angle ; ^T Threshold

^a It consisted of HXY, ACE, IBR, DHY, NOX-1 and NOX-2

^b They represent standard solutions of only one component (HXY, ACE, IBR, DHY and NOX Standard Solutions

F F											
	HXY	ACE	IBR	DHY	NOX-1	NOX-2					
System Suitabi	lity										
Retention	6.78	14.08	18.66	20.09	22.07	23.97					
Time (RT)	± 0.002	± 0.002	± 0.01	± 0.01	± 0.04	± 0.01					
RRT	0.36	0.76	1.00	1.08	1.18	1.28					
	± 0.0001	± 0.0003	1.00	± 0.001	± 0.002	± 0.001					
RSD (%)	0.96	0.87	0.99	0.75	1.42	1.44					
Plate Count	9632	9713	9916	10239	10767	10866					
Tailing Factor	1.08	1.07	1.07	1.05	1.03	1.00					
Resolution	-	18.50	7.20	1.90	2.41	2.10					
Linearity and l	Range										
Linear Range ((µg ml ⁻¹)										
LOQ%	0.098	0.119	0.171	0.163	0.674	0.553					
150%	2.256	2.234	2.250	2.257	2.268	2.268					
Regression Equ	uation (Y =	mx + b)									
Slope (m)	9673772.7	15258654.5	13706488.9	17127556.4	4071051.4	5278666.7					
Intercept (b)	55.78	-2.61	489.96	-283.01	147.31	215.94					
Regression Coefficient (R)	1.0000	0.9999	1.0000	0.9997	0.9999	0.9996					
R ² value	0.9999	0.9997	0.9999	0.9993	0.9998	0.9993					
Y-intercept (at 100% level)	0.38	-0.01	0.48	-1.14	2.32	2.56					
LOQ and LOD)										
LOQ (µg ml ⁻¹)	0.098	0.119	0.171	0.163	0.674	0.553					
LOQ (%)	0.013	0.016	0.023	0.022	0.089	0.073					
RSD (%)	2.40	0.89	2.29	1.33	1.48	1.89					
S/N	10.23	10.08	10.11	10.29	10.04	10.30					
LOD (µg ml ⁻¹)	0.032	0.039	0.056	0.054	0.222	0.183					
LOD (%)	0.004	0.005	0.008	0.007	0.029	0.024					
S/N	3.02	3.21	3.12	3.01	3.30	3.06					
Accuracy											
Average	100.44	100.10	100.05	100.67	00.00	00.00					
Recovery	102.44	102.13	100.07	100.67	99.26	99.00 ±1.08					
(± SD)	IU.80	IU.80	I 1.32	I 1.33	±2.49	I1.98					
RSD (%)	0.84	0.79	1.32	1.52	2.51	2.00					
Precision											
RSD (%)											
Intraday	0.90	0.54	1.18	0.94	0.97	0.51					
Interday	0.67	0.91	0.71	1.33	1.31	0.81					
F-Test											

Table S6 Summary results of system suitability, linearity and range, LOQ and LOD, accuracy

 and precision parameters

F	1.81	2.88	2.72	2.05	1.78	2.52
Fcritical two-tailed	5.05	5.05	5.05	5.05	5.05	5.05
t-Test						
t _{statistic}	0.87	0.49	0.48	1.12	0.76	0.23
t _{critical two-tailed}	2.26	2.31	2.31	2.26	2.26	2.31