Electronic Supporting Information

3D-printed devices for multiplexed semi-quantitative competitive lateral flow immunoassays *Guodong Tong¹, Kazushi Misawa¹, Purim Jarujamrus^{1,2,3}, Yuki Hiruta¹, Daniel Citterio¹*

 ¹ Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku ward, Yokohama, Kanagawa 223-8522, Japan.
² Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
³Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.

Table of Contents

1.	Design of device type B	S3
2.	Details and layouts of all pads	S4
3.	Details and design sketches of 3D models	S5
4.	Design of cap for device type B and P	S8
5. 6.	Definition of ∆Gray value Results of text-displaying assay	S9 S10
7.	Composition of artificial urine	S11
8.	Relationship between combined ratio and initial concentration of Ab and Ag	S12

1. Design of device type B

Fig. S1 Design of device type B with 8 LFIA lanes for plastic-backed nitrocellulose membranes; blue/red arrows represent the sample liquid flow path on the example of a single LFIA lane.

2. Details and layouts of all pads

Fig. S2 Details of size and arrangement of all components used for LFIA preparation in each lane: (a) cutting dimensions of all pads (TP: transfer pad); pad arrangement for device types B (b) and P (c); all numerals indicate dimensions in mm.

3. Details and design sketches of 3D models

Fig. S3 Sketches for Lid (a, e), Container (b, f), Cap for device P (c, g), and Cap for device B (d, h); all numerals indicate dimensions in mm.

4. Design of cap for device type B and P

Fig. S4 Details of cap supporting protrusion sections for device type B (a) and type P (b); all numerals indicate dimensions in mm.

5. Definition of Δ Gray value

Fig. S5 Definition and calculation method of the Δ Gray value used for quantitative analysis of test line color intensities.

6. Original scanned picture for text-displaying semiquantitative detection

Fig. S6 Unmodified color scans showing text-displaying results for the semi-quantitative detection of (A) caffeine = 0 ng/mL and acetaminophen = 0 ng/mL, (B) caffeine = 4 ng/mL and acetaminophen = 4 ng/mL, (C) caffeine = 10 ng/mL and acetaminophen = 8 ng/mL, (D) caffeine = 175 ng/mL and acetaminophen = 12 ng/mL in artificial urine samples; all experiments have been performed in triplicate with the results of 3 devices shown in each row.

7. Composition of artificial urine

Chemicals	Conc.(mM)
Lactic Acid	1.1
Citric Acid	2
Sodium Bicarbonate	25
Urea	170
Calcium Chloride	2.5
Sodium Chloride	90
Magnesium Sulfate	2
Sodium Sulfate	10
Potassium Dihydrogen Phosphate	7
Dipotassium Hydrogen Phosphate	7
Ammonium Chloride	25
Uric Acid	0.4
Creatinine	7
BSA	1(g/L)

Table S1 Composition of artificial urine samples

8. Relationship between combined ratio and initial concentration of Ab and Ag

$$Ab + Ag \underset{i=1}{K_a} Ab - Ag$$
$$K_a = \frac{C}{[Ab][Ag]} = \frac{C}{([Ab]_0 - C)([Ag]_0 - C)}$$
$$C^2 - \left(\frac{1}{K_a} + [Ab]_0 + [Ag]_0\right)C + [Ab]_0[Ag]_0 = 0$$
$$C = \frac{\left(\frac{1}{K_a} + [Ab]_0 + [Ag]_0\right) - \sqrt{\left(\frac{1}{K_a} + [Ab]_0 + [Ag]_0\right)^2 - 4[Ab]_0[Ag]_0}}{2}$$

- $K_{\rm a}$: Affinity constant($\approx 10^{12}$)
- [Ab] : Antibody conc.
- [Ag] : Antigen conc.
- [Ab-Ag] : Complex conc.(C)
- [Ag]₀ : Initial antigen conc.
- [Ab]₀ : Initial antibody conc.
- Combined ratio [%] = $C/[Ab]_0 \times 100\%$

Eq. S1 Relationship between immunocomplex and the concentration of antibody or antigen