Supporting Information for

An Efficient ESIPT-Based Ratio/Fluorimetric Probe for Rapid and Sensitive Detection

of Sarin Surrogate, Diethylchlorophosphate in Solution and Vapor Phase

Najmin Tohora^I, Chayan Debnath^I, Sabbir Ahamed, Jyoti Chourasia, Manas Mahato, Shreya

Ali, Shubham Lama, Subekchha Pradhan and Sudhir Kumar Das*

Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling,

West Bengal-734013, India

^IEqually contributed to this work

Table of Contents

Sl. No.	Descriptions				
Fig. S1	¹ H NMR spectrum of prepared probe BPMC in DMSO- d_{6} .	2			
Fig. S2	¹³ C NMR spectrum of prepared probe BPMC in DMSO- d_6 .				
Fig. S3	High-resolution mass spectra of synthesized BPMC .				
Fig. S4	Change in fluorescence intensity of the probe in the presence of				
	2.78 mM of DCP upon addition of 2.78 mM of other toxic				
	analytes in DMSO.				
Fig. S5	¹ H NMR titration spectra of BPMC due to the inclusion of	4			
	DCP.				
Fig. S6	High-resolution mass spectra of BPMC -DCP adduct.	4			
Table S1	Comparison table of chemosensors introduced for detecting	5			
	nerve agent stimulants in the last few decades with probe				
	BPMC.				

Fig. S1: ¹H NMR spectrum of prepared probe **BPMC** in DMSO-*d*₆.

Fig. S2: ¹³C NMR spectrum of prepared probe **BPMC** in DMSO- d_6 .

Fig. S3: High-resolution mass spectra of synthesized BPMC.

Fig. S4: Change in fluorescence intensity of the probe in the presence of 2.78 mM of DCP upon addition of 2.78 mM of other toxic analytes in DMSO.

Fig. S5: ¹H NMR titration spectra of **BPMC** due to the inclusion of DCP.

Fig. S6: High-resolution mass spectra of BPMC-DCP adduct.

Table S1: Comparison table of chemosensors introduced for the detection of nerve agent stimulants in the last few decades with probe **BPMC**.

Probes	Type of response	Detection Limit	Selectivity	Response Time	Application	Ref. No.
carbazole- based nanofibers	Fluorescence (ratiometric)	69.4 µM	DCP	3s	-	1
Pyridine based	Chromogenic	19 mM	Multi- sensing	-	Polyurethane film vapor test	2
fluorescein- hydroxamate aldehyde	Colorimetric	0.15 mM	Multi- sensing	instant	-	3
BODIPY– salicylaldehyd e oxime based	fluorometric	92.2 μM	Multi- sensing	-	Logic gate construction	4
bifunctional azoaniline- based	Colorimetric, fluorometric	0.2 mM	Multi- sensing	within 1 min	-	5
Xanthene	Colorimetric, fluorometric	26 µM	DCP	faster	-	6
Polymer (BPAm-co- DMA-co- MPDEA)	Colorimetric	18.4 μM	DCP & NH ₃	within few min	polymeric film vapor test	7
di-methylation derivatives	fluorometric	0.023 mM	DCP	Almost 2 minutes	TLC aluminum strips test	8
Pyrene derivative	fluorometric	7.32 μΜ	DCP	within a fraction of a second	Test kit & vapor test	9
Methyl orange derivative	colorimetric	3.8 µM	DCP	within a fraction of a second	Test kit & vapor test	10
chromone- benzimidazole coupled fluorogenic dyad (BPMC)	fluorometric	6.6 μΜ	DCP	4-5 minutes	Test kit & vapor test	Our wor k.

References

- C. Sun, W. Xiong, W. Ye, Y. Zheng, R. Duan, Y. Che and J. Zhao, *Anal. Chem.*, 2018, 90, 7131–7134.
- 2 S. Royo, A. M. Costero, M. Parra, S. Gil, R. Martínez-Máñez and F. Sancenõn,

Chemistry, 2011, 17, 6931–6934.

- 3 D. R. Goud, D. Pardasani, V. Tak and D. K. Dubey, *RSC Adv.*, 2014, 4, 24645–24648.
- 4 Y. J. Jang, O. G. Tsay, D. P. Murale, J. A. Jeong, A. Segev and D. G. Churchill, *Chem. Commun. (Camb).*, 2014, **50**, 7531–7534.
- 5 M. Gupta and P. H. il Lee, *Sensors Actuators B Chem.*, 2017, **242**, 977–982.
- 6 K. C. Behera and B. Bag, *Chem. Commun.*, 2020, **56**, 9308–9311.
- T. N. Annisa, S. H. Jung, M. Gupta, J. Y. Bae, J. M. Park and H. Il Lee, ACS Appl.
 Mater. Interfaces, 2020, 12, 11055–11062.
- 8 N. Singh, K. Kumar, N. Srivastav, R. Singh, V. Kaur, J. P. Jasinski and R. J. Butcher, New J. Chem., 2018, 42, 8756–8764.
- 9 N. Tohora, S. Ahamed, M. Mahato, T. Sultana, M. Selim Arif Sher Shah and S. K. Das, J. Mol. Liq., 2023, 387, 122698.
- N. Tohora, S. Ahamed, T. Sultana, M. Mahato and S. K. Das, *Talanta*, 2024, 266, 124968.