Supporting Information

Enhancing Mass Analysis of Ultra-High Molecular Weight Polystyrene: A Comparative Study of Copper and Silver Salts with MALDI Mass Spectrometry

Avinash A. Patil^{1*}; Thị Khánh Ly Lại^{1*}; Ching-Chieh Lee¹, Yi-Pang Chiu¹; Zhe-Xuan Liu¹; Che-Jen Lin²; Wen-Ping Peng^{1†}

¹Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 97401 ²Department of Chemsitry, National Dong Hwa University, Shoufeng, Hualien, Taiwan 97401

Experimental Parameters		Polystyrene				
		PS210k	PS650k	PS900k	PS2M	
Q1	RF Frequency <i>f</i> (kHz)	201	82	82	51	
	RF Amplitude kV _{p-p}	1.5	1	1.4	1.2	
	LMCO (Dalton)	26769	107226	150116	332636	
LIT	RF Frequency f (kHz), Start	70433	39843	32539	23004	
	RF Frequency <i>f</i> (kHz), End	16266	10649	10649	7274	
	RF Amplitude V _{p-p}	560	560	560	560	
	Auxiliary AC V _{p-p}	54	72	84	84	
	LMCO (Dalton)	32k	100k	150k	300k	
	Cooling time (ms)	800	800	800	800	
	Scanning time (ms)	500	500	500	500	

Table S1 The experimental conditions used to obtain different polystyrene mass spectra using MALDI LIT-MS

Table S2 The molecular weight data measured using MALDI LIT-MS for a variety of UHMW PS standards and cationization reagents.

PS	MALDI LIT-MS	gel permeation chromatography (GPC)*				Light scattering ^{\$}
	Molecular Weight (Da)	Molecular Weight (Da)			$\mathbf{PDI} = \frac{M_w}{M_n}$	Molecular Weight (Da)
	M _w (At peak center)	M _n	M _w	M _p		M _w
PS210k	240,056	211,400	213,600	218,500	≤1.01	211600
PS650k	606,178	617,600	649,400	648,800	≤1.06	670,000
PS900k	945,500	892,000	942,000	949,000	≤1.10	929,000
PS2M	2,006,169	1,524,000	1,971,000	2,161,000	≤1.30	1,971,000

* Molecular weight measured using gel permeation chromatography by supplier.

[§] Molecular weight measured using Light scattering method by supplier.

 M_p = molecular weight of the highest peak

Table S3 Polystyrene concentrations used to optimize the concentration ratio of PS : matrix : cationization salt using DCTB matrix (0.1 M) and AgNO₃ salt (0.15 M) at fixed concentration.

The red-colored numbers represent the best concentration condition for each PS standard which resulted in the highest signal intensity.

Serial No.	Polystyrene molar concentration (M)					
	PS210k	PS650k	PS900k			
1	1.0E-05	1.0E-06	1.0E-07			
2	5.0E-05	5.0E-06	5.0E-07			
3	1.5E-04	1.0E-05	1.0E-06			
4	5.0E-04	5.0E-05	5.0E-06			
5		1.0E-04	1.0E-05			

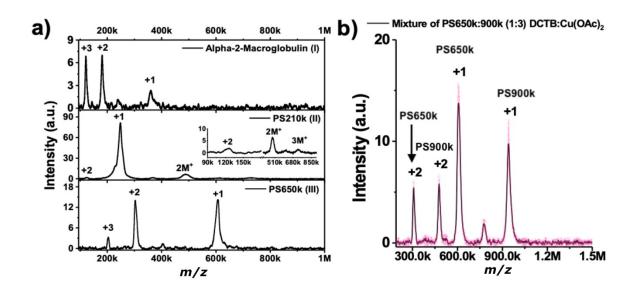


Figure S1 a) Mass spectrum of I) alpha-2-macroglobulin acquired with SA matrix and mass spectra of II) PS210k, and III) PS650k obtained with a DCTB matrix and $Cu(OAc)_2$ salt. All mass spectra were acquired at similar ion trapping and experimental conditions. b) Mass spectra of PS650k and PS900k mixture with the mixing ratio of 1:3 obtained with a DCTB matrix and $Cu(OAc)_2$ salt.

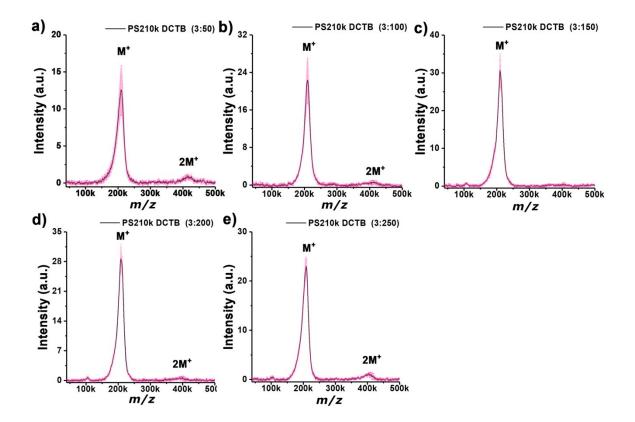


Figure S2 Mass spectra of PS210k obtained using DCTB matrix with PS : matrix concentration (v/v) ratios of a) 3:50, b) 3:100, c) 3:150, d) 3:200, and e) 3:250.

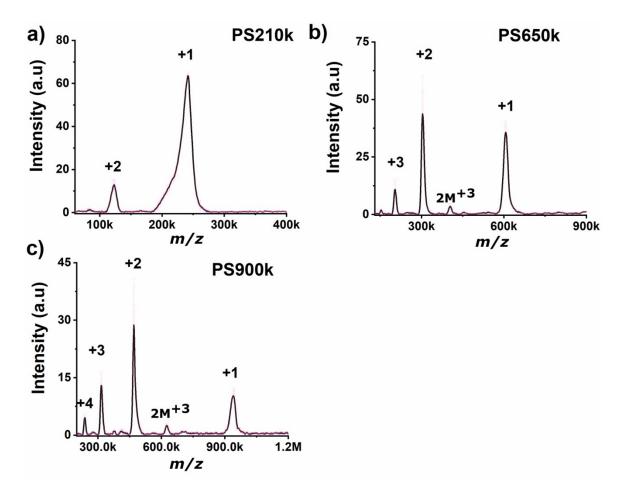


Figure S3 Mass spectra of a) PS210k, b) PS650k, and c) PS900k obtained with a DCTB matrix and AgNO₃ salt at the optimized ratio of PS: matrix: AgNO₃ concentration conditions listed in Table 1.

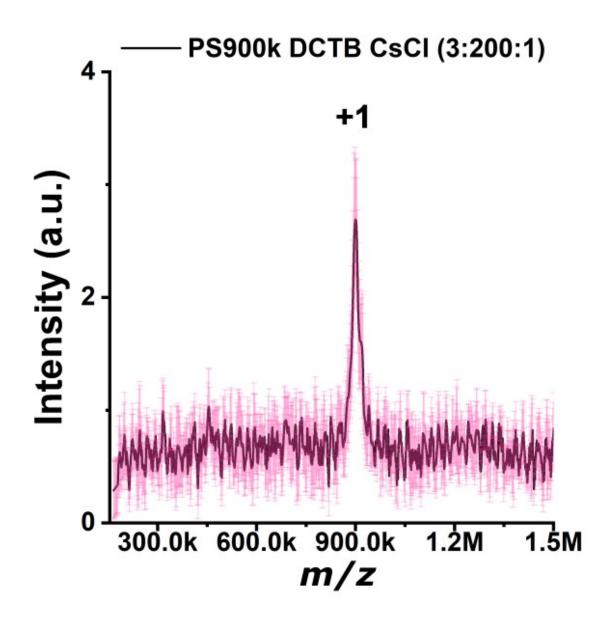


Figure S4 Mass spectra of PS900k obtained with a DCTB matrix using CsCl salt.

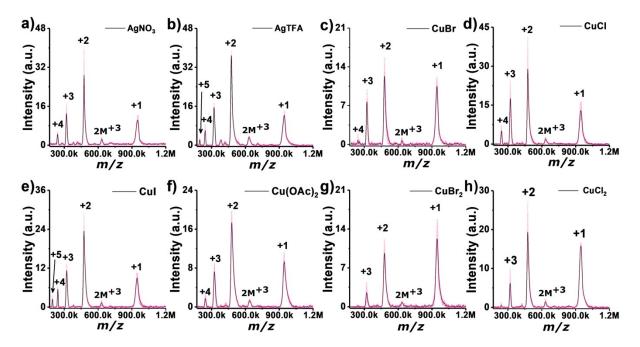


Figure S5 Mass spectra of PS900k obtained with a DCTB matrix using various cationizing reagents with a) AgTFA, b) AgNO₃, c) CuI, d) CuBr, e) CuCl, f) CuBr₂, g) CuCl₂, and h) Cu(OAc)₂. The optimal ratio of PS : matrix : cationizing reagent was 3:200:1 (v/v/v).

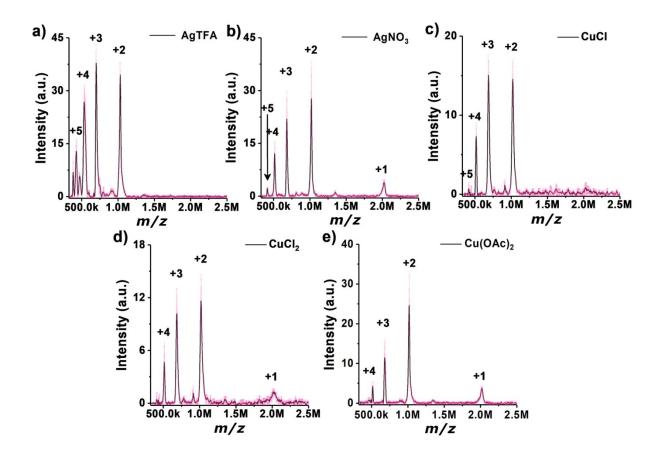


Figure S6 Mass spectra of PS2M obtained with a DCTB matrix using cationizing reagents with a) AgTFA, b) AgNO₃, c) CuCl, d) CuCl₂, and e) Cu(OAc)₂. The optimal ratio of PS : matrix : cationizing reagent was 3:200:1 (v/v/v).

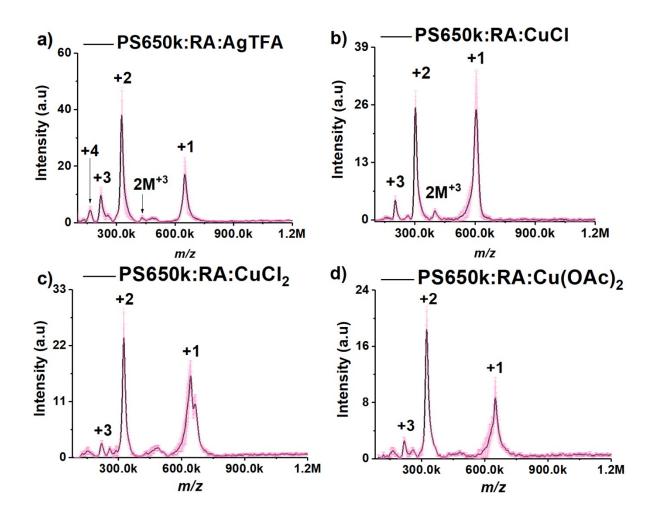


Figure S7 Mass spectra of PS650k obtained with a RA matrix using various cationizing reagents with a) AgTFA, b) CuCl, c) CuCl₂, and d) Cu(OAc)₂. The optimal ratio of PS : matrix : cationizing reagent was 3:200:1 (v/v/v).

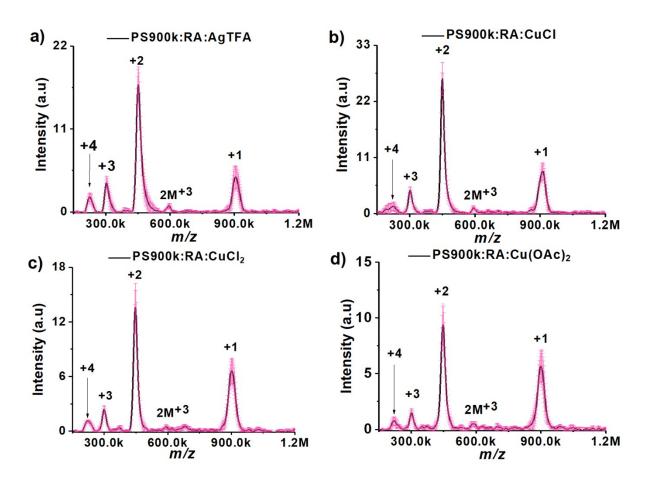


Figure S8 Mass spectra of PS900k obtained with a RA matrix using various cationizing reagents with a) AgTFA, b) CuCl, c) $CuCl_{2}$, and d) $Cu(OAc)_{2}$. The optimal ratio of PS : matrix : cationizing reagent was 3:200:1 (v/v/v).

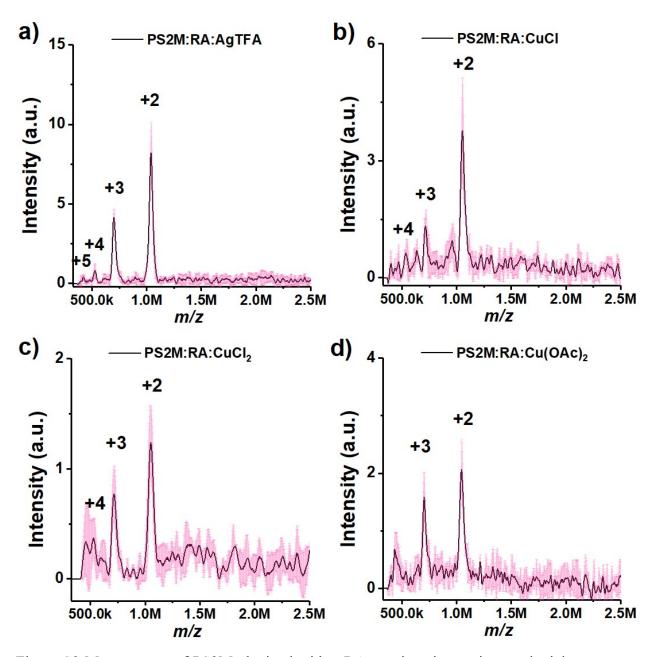


Figure S9 Mass spectra of PS2M obtained with a RA matrix using various cationizing reagents with a) AgTFA, b) CuCl, c) $CuCl_{2}$, and d) $Cu(OAc)_{2}$. The optimal ratio of PS : matrix : cationizing reagent was 3:200:2 (v/v/v).