Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

1

High-density 4-Vinylpyridine membrane for rapid purification of

2	antibody
3	Qinrong Wu ^a , Bin Wang ^a , LiYun Zhang ^{c,*}
4	^a Department of Pharmacy, Ganzhou Liver Institute, Ganzhou Fifth People's
5	Hospital, Ganzhou, China
6	^b Department of Nephrology, Ganzhou People's Hospital, Ganzhou, China
7	^c Emergency Department, Ganzhou People's Hospital, Ganzhou, China

8 *Corresponding author: LiYun Zhang, Email: <u>zhouhuang2023@126.com</u>

S1. Preparation and evaluation of the PP-HEMA membrane

To synthesize the PVDF-HEMA membrane, a fixed molar ratio of CuBr₂/PMDETA/L-Asc/EBIB was designed and experiments were performed to optimize the following parameters: 1) the molar ratio of HEMA/MBA (3:1, 2:1, 1:1, 1:2, 1:3); 2) the total concentration of monomers including HEMA and MBA (0.08 to 0.44 mM); 3) the reaction time (2 to 10 h). The following experiments were conducted: $500 \ \mu L$ of HSA ($50 \ \mu g/mL$ in 12 mM PBS) was consecutively flowed through the membrane, and the eluate was collected for BCA assay for the recovery calculations.

S2. Preparation of the PVDF-HEMA-co-4-vinylpyridine membrane

To synthesize the PVDF-HEMA-co-4-vinylpyridine membrane, a fixed molar ratio of CuBr₂/PMDETA/L-Asc/EBIB was designed and experiments were performed to optimize the following parameters: 1) the amount of 4-vinylpyridine monomer (0.05 to 0.15 mM); 2) the reaction time (1 to 8 h). The evaluation of the indicators was mainly based on the recovery (%) of rituximab, calculated as (1-(BCA value of analyte in eluent/BCA value of analyte in standard working solution)) × 100%.

Table S1. Composition of the polymerization mixtures for preparing the PVDF-HEMA membrane.

No.	Monomers (%, w/w)		Modification reagent (%, w/w)			Reducing Agent (%)	Monomers/ Modification	Preparation Time	CRP Recovery
	НЕМА	MBA	EBIB	CuBr ₂ and PMDETA DMF		L-Asc	reagent (%, w/w)	(h)	(%)
1	76.69	28.31	2.53	0.69	84.82	47.32	17.65: 82.35	6	16.5
2	62.80	37.20	2.53	0.69	84.82	47.32	17.65:82.35	6	65.1
3	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	6	93.8
4	29.68	70.32	2.53	0.69	84.82	47.32	17.65:82.35	6	80.4
5	21.96	78.04	2.53	0.69	84.82	47.32	17.65:82.35	6	63.1
6	45.77	54.23	2.53	0.69	84.82	47.32	5.77:94.23	6	20.4
7	45.77	54.23	2.53	0.69	84.82	47.32	8.41:91.59	6	40.4
8	45.77	54.23	2.53	0.69	84.82	47.32	13.68:86.72	6	55.4
9	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	6	32.4
10	45.77	54.23	2.53	0.69	84.82	47.32	21.61:78.39	6	54.7
11	45.77	54.23	2.53	0.69	84.82	47.32	25.20:74.80	6	60.7
12	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	2	20.4
13	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	4	53.7
14*	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	6	94.7
15	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	8	86.4
16	45.77	54.23	2.53	0.69	84.82	47.32	17.65:82.35	10	91.1

^{*:} the condition of No. 14 was considered as the optimum; w/w: weight to weight ratio.

Table S2. Composition of the polymerization mixtures for preparing the MPC polymer brush modified PVDF-HEMA-*co*-4-vinylpyridine membrane .

	Monomers (%)		Reducing agent	t	Preparation Time	Rituximab Recovery (%	
No.	4-vinylpyridine	CuBr ₂ and PMDETA	DMF	L-Asc	(h))	
1	16.33	1.50	86.86	2.56	8	80.5	
2*	16.33	1.50	96.74	2.56	8	93.5	
3	16.33	1.50	80.65	2.56	8	76.5	
4	5.45	1.50	96.74	1.26	8	38.6	
5	10.24	1.50	96.74	1.26	8	64.2	
6	16.33	1.50	96.74	2.56	8	92.5	
7	20.08	1.50	96.74	1.26	8	79.6	
8	16.33	1.50	96.74	1.26	8	94.6	
9	16.33	1.50	96.74	1.26	4	75.6	
10	16.33	1.50	96.74	1.26	6	64.6	
11	16.33	1.50	96.74	1.26	8	70.6	
12	16.33	1.50	96.74	1.26	10	77.6	
13	16.33	1.50	96.74	1.26	12	89.6	

^{*:} the condition of No. 2 was considered as the optimum; w/w: weight to weight ratio; -: the membrane surface structure became too hard to be rolled.

 Table S3. Comparison of XPS results for different membranes.

Atomic composition percentage (%)	С	О	N	Br
PVDF	98.15	1.68	0.17	-
PVDF-HEMA	70.04	29.64	0.22	0.10
PVDF-HEMA-co-4-vinylpyridine	72.73	22.86	4.34	0.07

^{-:} cannot be detected