Supporting information

A Perylene-based Fluorescent Probe for Highly Efficient SDS Detection

Amrit Kaur,^{a,#} Mina Bagherifard,^{a,#} Alissa Brooke Anderson,^a Neelam Tariq,^a Zois Syrgiannis,^a and Ioannis Spanopoulos^{a,*}

^a Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States

Corresponding author: <u>spanopoulos@usf.edu</u>

Table of contents

- Section S1. Materials and methods
- Section S2. Synthesis section
- Section S3. Characterization
 - a. ¹H NMR
 - b. ¹³C NMR
 - c. MALDI TOF studies
- Section S4. Experimental data
 - a. Temperature-dependent UV-vis and fluorescence studies
 - b. UV-vis measurements
 - c. Detection limit calculation
 - d. Comparative and competitive analysis of interfering analytes
 - e. Zeta potential studies
 - f. Time-resolved fluorescence studies
 - g. Fluorescence studies in presence of tap water

Section S5. References

S1. Materials and methods

Starting materials

All starting materials for synthesis were purchased commercially and were used without further purification. 3,4,9,10-Perylenetetracarboxylic 3,4:9,10- dianhydride (98%), and methyl iodide were purchased from Sigma-Aldrich; 1-(3-aminopropyl)imidazole (98%) was purchased from Fischer. Sodium dodecyl sulfate (SDS, 98%), glycerol, dimethylformamide, methanol (HPLC grade), metal ions and salts for UV-vis and fluorescence studies were purchased from Thermo Fischer.

¹H-NMR and ¹³C-NMR

The ¹H and ¹³C NMR experiments were recorded using a Bruker AVANCE III HD 600 MHz in DMSO -d₆ as solvent. Data are reported as follows: chemical shifts in ppm, multiplicity (s= singlet, br= broad, t= triplet, multiplet = m, J = coupling constant represented in Hz.

MALDI-TOF

The mass was detected using Bruker UltraFleXtreme MALDI-TOF/TOF equipped with Smartbeam II, 2 GHz for MS and 1 GHz for MS/MS, and FlashDetector[™] with 5 GS/s 10-bit digitizer for enhanced dynamic range. Ultra-pure alpha-Cyano-4-hydroxycinnamic acid matrix was used for sample investigations.

UV-Vis Spectroscopy

UV-Vis spectra were recorded on Shimadzu UV-1900i.

PL/TRPL/PLQY Measurements

PL and TRPL studies were performed using an Edinburgh Instruments FS5 spectrofluorometer equipped with a 150 W xenon lamp, a 475 nm EPL picosecond pulsed diode laser, and an integrating sphere for PLQY determination.

SEM Scanning Electron Microscopy

SEM measurements were recorded on a high-resolution thermal field emission source Hitachi SU-70. Data were acquired with an accelerating voltage of 16 kV. The samples were prepared by pressing the powder on to a substrate of carbon adhesive tape and tilting the sample to 30 degrees. The electron beam energy was set to 16 keV.

Zeta Potential

The zeta potential measurements were conducted using a Zetasizer Nano-ZS (Malvern Instruments, NanoSeries) with DTS 1070 cells.

UV-Vis and Fluorescence studies:

For the UV-Vis and fluorescence titration the 10^{-3} M stock of Compound 5 was prepared in the DMSO. A 1.0 mM stock solution of SDS was prepared by dissolving 2.8 mg SDS in 10.0 mL distilled water. A 10.0 μ M concentration of compound 5 was used for each titration. The standard solution (10^{-1} M to 10^{-3} M stock) of various metal ions such as Na⁺, K⁺, Ca²⁺ and Mg²⁺ ions were prepared by dissolving their chloride salts. The 10^{-1} M to 10^{-3} M stock solution of inorganic anions (I⁻, Br⁻) were prepared by dissolving their

tertabutylammonium salt, while anions such as SO42-, NO3-, CH3COO-, were

prepared by dissolving their potassium and sodium salt in 1 mL in distilled water. For the interference and competitive studies, 1.0 mM concentration of metal ions and anions was added to the titration experiment. In titration experiments, each time a 3.0 mL solution of compound 5 (30.0 μ L compound 5 in 2970 μ L distilled water) was filled in a quartz cuvette (path length, 1 cm) and spectra were recorded after the addition of appropriate analyte. For the detection of SDS in the household samples, household's samples (0.5 mL) were dissolved in water (15 mL); a clear solution was obtained through centrifugation for 90 minutes at 40000 rpm and stood for 48 h.¹

S2. Synthesis

Synthesis of 2,9-bis(3-(1H-imidazol-1-yl)propyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (Compound 3):

Scheme 1 Synthesis pathway for compound 3

To a well-stirred suspension of perylene-3,4,9,10-tetracarboxylic dianhydride 1 (1 g, 2.7 mmol) in 80 mL dry dimethylformamide, 1-(3-aminopropyl)imidazole 2 (1.5 g, 5.86 mmol) was added dropwise, followed by purging of the reaction mixture under argon (Ar) for 10 minutes. Afterward, the resulting mixture was refluxed at 140 °C for 72 h. Then, the red precipitate was filtered off and thoroughly washed with cold water and methanol to yield compound 3 (1.50 g, 93%). The melting point of compound 3 was >295 °C. As compound 3 has poor solubility in the available deuterated solvents, ¹H and ¹³C NMR spectra were obtained only after methylation i.e compound 5.

Synthesis of Compound 5²:

Scheme 2 Synthesis pathway for compound 5

To a well-stirred suspension of compound **3** (1.0 g, 1.1 mmol) in 30 mL dry DMF, methyl iodide (2.5 equiv.) was added dropwise. The resultant mixture was refluxed for 72 h at 140 °C. The reaction mixture was cooled down, and the resultant solvent was

removed under vacuum. The obtained solid was washed with water and methanol resulting in the pure compound **5** in 90% yield as reddish brown solid. ¹H NMR (600 M*Hz*, DMSO-*d*₆) δ (ppm) = 9.19 (s, 2H), 8.60 (d, *J* = 6 *Hz*, 4H), 8.35 (d, *J* = 6 *Hz*, 4H), 7.87 (s, 2H), 7.79 (s, 2H), 4.37 (t, *J* = 18 *Hz*, 4H), 4.16 (br, 4H), 3.93 (s, 6H), 2.31-2.30 (m, 4H); ¹³C NMR (600 M*Hz*, DMSO-*d*₆) δ (ppm) = 163.27, 137.17, 133.93, 131.02, 128.50, 125.34

, 124.44, 124.12, 122.75, 122.69, 47.43, 37.35, 36.32, 28.88. MALDI-TOF: $[M-I]^{2+}$ calculated for $[C_{38}H_{32}N_6O_4]^{2+}$ is 636.247; and found to be 636.247.

Fig. S2 The ¹³C-NMR spectrum of compound 5 in DMSO- d_6 at 600 MHz.

160 150 140 130 120 110 100

170

90 80 f1 (ppm) 70 60 50

30 20 10

40

MALDI-TOF

Fig. S3 The MALDI-TOF spectrum of compound 5.

S4. Experimental data

Temperature-dependent UV-vis and fluorescence emission spectra of compound 5

Fig. S4 A) The absorption and B) fluorescence spectra of compound 5 (10 μ M) showing changes in absorption and emission intensity upon increasing temperature from 25 °C - 90 °C in 99% vol. fraction of H₂O in DMSO at $\lambda_{ex} = 490$ nm.

UV-vis spectra of compound 5 upon addition of SDS

Fig. S5 The absorption spectra of compound 5 (10.0 μ M) upon addition of 1.0 mM SDS solution (0.00-200.0 μ L) in 99% vol. fraction of H₂O in DMSO.

Detection Limit Calculations of Compound 5 for SDS

The detection limit was calculated based on the fluorescence titration using the standard calibration method.³ To determine the S/N ratio, the emission intensity of compound **5** without SDS was measured 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation: $DL = 3 \times SD/S$, where SD is the standard deviation of the blank solution measured 10 times; S is the slope of the calibration curve. From the graph, the slope was found (S) = -15,01,467.08, Thus using the formula, a Detection Limit (DL) = 8.65 X10⁻⁵ M (86.5 µM) is determined.

Fig. S6 The fluorescence response of compound 5 (10.0 μ M) to various concentrations of SDS in 99% H₂O in DMSO at λ_{ex} = 490 nm.

Comparative and Competitive Analysis of Interfering Analytes

Fig. S7 The fluorescence emission response for compound 5 (10.0 μ M) in 99% vol. fraction H₂O in DMSO in the presence of various interfering analytes (0-1.0 mM) at λ_{ex} = 490 nm. The red column represents the fluorescence emission of the probe alone; the blue columns represent the fluorescence emission of the probe with each interfering substance added; and the light pink column represents the fluorescence emission of the probe after SDS is added as an interfering agent.

Zeta Potential of Compound 5, SDS and Compound 5-SDS

Fig. S8 The graph depicts the zeta potential of compound 5 (10.0 μ M) in a 99% vol. fraction of H₂O in DMSO.

Fig. S9 The graph depicts the zeta potential of SDS (10.0 μ M) in 99% vol. fraction of H₂O in DMSO.

Fig. S10 The graph depicts the zeta potential of compound 5 (10.0 μ M) in the presence of SDS (10.0 μ M) in a 99% vol. fraction of H₂O in DMSO.

Time-resolved fluorescence studies

Fig. S11 The time-resolved fluorescence spectra of compound 5 (10.0 μ M) upon the addition of SDS (1.0 mM) in 99% H₂O:DMSO at $\lambda_{ex} = 475$ nm.

SAMPLE.NO	Sample	SDS DETECTION
1	Handwash 1	
2	Handwash 2	
3	Handwash 3	
4	Bodywash 1	
5	Bodywash 2	
6	Dishwasher1	
7	Dishwasher 2	
8	Dishwasher 3	
9	Dishwasher 4	
10	Facewash	
11	Shampoo 1	
12	Shampoo 2	
13	Shampoo 3	
14	Shampoo 4	X
15	Surface Cleaner 1	X
16	Surface Cleaner 2	X
17	Lens Cleaner	X

Table S1. The table showcases various household items tested for the presence of the SDS surfactant (See also Figure 3C).

Fig. S12 The fluorescence spectra of Compound 5 (10.0 μ M) upon addition of SDS (0-1.0 mM) in 150-times diluted tap water at λ_{ex} = 490 nm.

Table S2. The detection of SDS in 150-times diluted tap water

Fig. S13 The fluorescence response of Compound 5 (10.0 μ M) upon addition of SDS (0-0.15 mM) in H₂O using no dilution, at λ_{ex} = 490 nm.

Concentration (mM)

Table S3. Overview of literature reports on SDS detectio	n.
--	----

#.	Material	Solvent system of detection	Response time	Application	Journal
1.	Compound 5, PBI- Imidazolium based dye	DMSO:H ₂ O (0.1:9.9, V:V)	<10s	 SDS in household items Detection of SDS in tap water 	This work
2.	zirconium(IV)-based metal–organic framework (MOF) ⁴	Deionized water to make probe suspension	50s the preparation of sample for PL studies takes 24h	• Detection of SDS in various water samples	Inorg. Chem. 2023 , 62 , 8605–8614
3.	quaternary ammonium complex of (2- (methylthio)indeno[1,2,3- gh]phenan-thridin-1- yl)(phenyl)methanon ⁵	DMSO	-	• SDS in household items	J. Surfactants Deterg, 2024,
4.	UiO-66-NH2@Au NC8) ⁶	Deionized water	4 min	• SDS in household items	Anal. Chem. 2024, 96 , 4987–4996.
5.	5-hydroxytryptamine Derived carbon naoparticle ⁷	In DMSO:H2O (3:1,v:v)	NA	• SDS in tap water and urine	<i>Dyes Pigm.</i> 2022, 208 , 110859
6.	3-ethylbenzothiazolium iodide dyes ⁸	CH ₃ CN:PBS (2:8,v:v)	12 min	• Detection of SDS in various water samples	Anal. Methods, 2021, 13, 3292
7.	Graphene oxide encapsulated Rhodamine DyeRBGO ⁹		20 min	• SDS in household items	Anal. Methods,2019, 11 ,5826
8.	Rhodamine conjugated pyrene dye ¹⁰	CH ₃ CN :H ₂ O (1:9,v:v)	6 hrs	• Various surfactants	Sens. Actuators, B 2021 , 331 , 129408
9.	nicotinamide-anthracene conjugates NAAN-1 ¹¹	H ₂ O/DMSO=9/1, pH = 7	30 mins	• Detection of SDS in various water samples	Sens. Actuators, B, 2017, 241 ,8–18.
10.	Green fluorescent protein ¹²	HEPES buffer	5 min	• SDS in tap water	J. Sensors 2015, 2015 , 809065
11.	TPE-B ¹³	Pure water	30s	• SDS in tap water, river water, and drinking water	<i>Mater. Sci. Eng. C</i> , 2019, 99 , 1092–1098

S5. References:

- 1. G. Usha, R. Prakash, K. Karpagalakshmi, S. Ramalakshmi, L. Piramuthu, C. Yang and N. Selvapalam, *Anal. Methods*, 2019, **11**, 5826-5832.
- 2. F. D'Anna, S. Marullo, G. Lazzara, P. Vitale and R. Noto, *Chem. Eur. J.*, 2015, **21**, 14780-14790.
- 3. L. Zeng, T. Chen, B. Zhu, S. Koo, Y. Tang, W. Lin, T. D. James and J. S. Kim, *Chem. Sci.*, 2022, **13**, 4523-4532.
- 4. S. Ghosh, J. Krishnan, V. Karthik, A. Dhakshinamoorthy and S. Biswas, *Inorg. Chem.*, 2023, **62**, 8605-8614.
- 5. K. Jamuna, A. T. Sebastian, S. Subbiah, N. Selvapalam and S. Shanmugam, *J. Surfactants Deterg*, 2024, DOI: 10.1002/jsde.12785.
- D.Wei, H. Zhang, Y. Tao, K.Wang, Y.Wang, C. Deng, R. Xu, N. Zhu, Y. Lu, K. Zeng, Z. Yang, and Z. Zhang, *Anal. Chem.* 2024, 96, 4987–4996.
- 7. L. Hu, X.-Qiong Li, Y.-Lei Jia, M.-Jie Wei, H.Ye Li, F.-Ying Kong, W. Wang, Z.-Xia Wang, *Dyes Pigm.* 2022, **208**, 110859.
- 8. H. Chen, X. Mu, J. Li, Y. Qin, and L. Yan, Anal. Methods, 2021, 13, 3292-3296.
- 9. G. Usha, R. Prakash, K. Karpagalakshmi, S. Ramalakshmi, L. Piramuthu, C. Yang and N. Selvapalam, *Anal. Methods*, 2019, **11**, 5826.
- 10. M. Qiao, Y. Cao, T. Liu, L. Ding and Y.Fang, Sens. Actuators, B 2021, **331**, 129408.
- 11. S. Sandhu, R. Kumar, N. Tripathi, H. Singh, P. Singh and S. Kumar, *Sens. Actuators, B*, 2017, **241**, 8–18.
- 12. L. Ooi, L. Y. Heng, A. Ahmad, J. Sensors 2015, 2015, 809065.
- 13. Z. Zhou, X. Li, Y. Zhang, C.C. Zhang, Y. Tang, J. Gao, L. Ma and Q. Wang *Mater*. *Sci. Eng. C*, 2019, **99**, 1092–1098.