# **Supporting Information**

## A Novel Fluorescent Probe for Rapid and Selective Detection of Fluoride Ions in Living

Cells

Tingting Feng<sup>1</sup>, Jiaxue Yang<sup>1</sup>, Yi Wang<sup>1</sup>, Taozhu Hu<sup>1</sup>, Longjia Yan<sup>1,2</sup>, Yi Le<sup>1,2</sup>, Li Liu<sup>1,2,\*</sup>

<sup>1</sup> School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
<sup>2</sup> Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China
E-mail: lliu2@gzu.edu.cn (Li Liu)

## Contents

| 1. Materials and Instruments                               | 2  |
|------------------------------------------------------------|----|
| 2. Preparation of probe solution and fluorescence analysis | 2  |
| 3. Cell cytotoxicity assay and Cell image                  | 2  |
| 4. Synthesis and characterization                          | 3  |
| 5. Supporting tables                                       | 13 |

#### 1. Materials and Instruments

All chemicals were purchased from Sigma-Aldrich (Shanghai) Co., Ltd. and were of analytical grade. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Bruker (Avance) 400 MHz NMR instrument. The melting point was measured in an X-4X digital micromelting point analyzer (Shanghai Microelectronics Technology Co., Ltd.). Absorption spectra were recorded on a UV-5500PC UV-visible spectrophotometer (Shanghai Meitai Instrument Co., Ltd.). Fluorescence spectra were measured on a fluorescence photometer (Hitachi F4700, Japan). Additionally, a microplate reader (TECAN, Infinite M200) was used in the study. Confocal fluorescence imaging in cells were recorded with a Nikon CSU-W1. All of the above instruments were provided by the School of Pharmacy, Guizhou University.

Mass spectra were recorded on a TSQ 8000 high-resolution mass spectrometer (Thermo Fisher Scientific Co. Ltd.).

## 2. Preparation of probe solution and fluorescence analysis

The probes **DTP** was dissolved in dimethyl sulfoxide (DMSO) to make a stock solution of  $1*10^{-3}$  M. The stock solution of tetrabutylammonium fluoride (TBAF) was prepared in THF solution at a concentration of  $1*10^{-1}$ M. A  $1*10^{-3}$  M stock solution is prepared by dissolving various analytes in deionized water. Various common cations (Na<sup>+</sup>, K<sup>+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Ag<sup>+</sup>, and Zn<sup>2+</sup>) were used in the form of sulfate (SO<sub>4</sub><sup>2-</sup>). Anions (Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, SCN<sup>-</sup>, CH<sub>3</sub>COO<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, HPO<sub>4</sub><sup>-</sup>) were used in the form of sodium (Na<sup>+</sup>) salts. Preparation of HEPES buffer: HEPES (23.8 g) was weighed and dissolved in purified water to form a 0.1 M HEPES purified water solution and stored in a refrigerator at 4 °C. All spectra were measured using a 10 mm × 10 mm cuvette with an excitation. All aqueous solutions were prepared with ultrapure water obtained from a Milli-Q water purification system.

### 3. Cell cytotoxicity assay and Cell image

Human hepatocellular carcinoma cells (HepG2 cells) were provided by Kunming Cell Bank, Chinese Academy of Sciences. HepG2 cells were cultured at 37 °C in a 5% CO2 cell culture incubator. The in vitro cytotoxicity of **DTP** on HepG2 cells was assessed by an MTT assay. Cell viability was calculated using the formula: cell viability (%) = (mean absorbance of the drug group - mean absorbance of the blank group)/(mean absorbance of the untreated group - mean absorbance of the blank group) × 100%. Fluorescence imaging of F<sup>-</sup> in HepG2 cells. Specific experiments were performed by the following subgroups: (a) **DTP** (10  $\mu$ M) treatment for 10 min. (b) **DTP** (10  $\mu$ M) pretreatment for 10 min, followed by incubation with TBAF (200  $\mu$ M) for 30 min.

Before imaging, all cells were washed three times with PBS.

### 4. Synthesis and characterization

Compound **2**: compound **1** (1090 mg, 3 mmol), 4-bromo-2-methoxybenzaldehyde (702.4 mg, 3 mmol), Na<sub>2</sub>CO<sub>3</sub> (629.65 mg, 6 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (34.32 mg, 0.3 mmol), and Dioxane: H<sub>2</sub>O (1: 1) 20 ml were added to a 100 ml round-bottomed flask in a round-bottomed flask protected by argon. The reaction was heated to 110 °C for 3 h. After the reaction was completed, the reaction was quenched by adding water. DCM (40 ml × 3) was extracted, and the organic layer was collected, washed, dried, and spun dried under reduced pressure to obtain the crude product. PE/EA = 5/1 column chromatography yielded 408 mg of yellow solid in 43.63% yield. M.P.: 73.4-74.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.48 (d, *J* = 0.8 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.22 – 7.16 (m, 3H), 7.11 (d, *J* = 1.4 Hz, 1H), 6.98 – 6.89 (m, 3H), 4.01 (s, 3H), 3.90 – 3.86 (m, 2H), 1.92 – 1.85 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  189.3, 162.2, 147.8, 145.7, 144.7, 134.0, 129.1, 127.5, 127.4, 126.2, 125.9, 125.5, 124.1, 123.4, 122.7, 118.9, 115.6, 109.4, 55.7, 49.3, 20.1, 11.3. ESI-HRMS C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>S ([M+Na]<sup>+</sup>) calcd 398.1185, found 398.1178.

Compound **3**: compound **2** (375 mg, 1 mmol) and DCM (10 ml) were added to a 50-ml roundbottom flask and cooled to 0 °C. BBr<sub>3</sub> (5010 mg, 20 ml) was added while stirring, and the reaction was stirred at room temperature for 1 h. After the reaction was completed, the reaction was quenched by adding NaHCO<sub>3</sub>. DCM (10 ml × 3) was extracted, and the organic layer was collected, washed, dried, and spun dried under reduced pressure to obtain the crude product. PE/EA = 5/1 column chromatography yielded 336 mg of pale yellow solid in 93.63% yield. M.P.: 98.3-99.4 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  11.14 (s, 1H), 9.91 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.23 – 7.20 (m, 1H), 7.20 – 7.14 (m, 3H), 6.98 – 6.92 (m, 2H), 6.90 (dd, *J* = 8.0, 1.2 Hz, 1H), 3.90 – 3.85 (m, 2H), 1.93 – 1.83 (m, 2H), 1.06 (t, *J* = 7.6 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 162.1, 148.6, 146.1, 144.6, 134.1, 133.2, 127.5, 127.4, 126.3, 126.0, 125.5, 124.2, 122.8, 119.3, 118.1, 115.6, 115.5, 114.8, 49.3, 20.2, 11.3. ESI-HRMS C<sub>22</sub>H<sub>19</sub>NO<sub>2</sub>S ([M+Na]<sup>+</sup>) calcd 384.1028, found 384.1019. Compound **4**: compound **3** (361 mg, 1 mmol), DMAP (146 mg, 1.2 mmol), TEA (303 mg, 3 mmol), and DCM (5 ml) were added to a 100-ml two-necked vial and cooled to 0 °C. TBSCl (452 mg, 3 mmol) was dissolved in DCM (5 ml) and added dropwise to the two-necked vial, and the reaction was allowed to proceed for 12 h at room temperature. After the reaction was completed, the reaction was quenched by adding water. DCM (20 ml × 3) was extracted, and the organic layer was collected, washed, dried, and spun dried under reduced pressure to obtain the crude product. PE/EA = 3/1 column chromatography yielded 354 mg of yellow oil in 74.6% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.47 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.25 – 7.20 (m, 1H), 7.20 – 7.14 (m, 2H), 7.02 (d, *J* = 1.6 Hz, 1H), 6.98 – 6.93 (m, 2H), 6.90 (dd, *J* = 8.0, 1.2 Hz, 1H), 3.90 – 3.86 (m, 2H), 1.92 – 1.85 (m, 2H), 1.06 (d, *J* = 5.2 Hz, 12H), 0.34 (s, 6H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  189.6, 159.2, 147.5, 145.7, 144.7, 133.7, 128.8, 127.5, 127.4, 126.1, 125.8, 125.7, 125.5, 124.2, 122.7, 119.8, 117.8, 115.6, 115.5, 49.3, 25.7, 20.1, 18.4, 11.3. ESI-HRMS C<sub>28</sub>H<sub>33</sub>NO<sub>2</sub>SSi ([M+Na]<sup>+</sup>) calcd 498.1893, found 498.1884.



Fig. S1. <sup>1</sup>H NMR spectrum of 2.







Fig. S3. HRMS spectrum of 2











Fig. S7. <sup>1</sup>H NMR spectrum of 4







Fig. S9. HRMS spectrum of 4









Fig. S13. FT-IR spectrum of DTP

















Fig. S16. HRMS spectrum of DTP-F

# 5. Supporting tables

| Probe     | Structure                       | Solvent                             | Response<br>time | Detection<br>limit(µM) | $\lambda e_{x/em}$ (nm) | Reference |
|-----------|---------------------------------|-------------------------------------|------------------|------------------------|-------------------------|-----------|
| BIPA      |                                 | Pure EtOH                           | 2 h              | 3.5                    | 320/480                 | 42        |
| Flu-Si    |                                 | CH <sub>3</sub> OH/H <sub>2</sub> O | -                | 0.025                  | 320/532                 | 43        |
| Silyl-KIZ | F <sub>3</sub> C<br>N<br>O      | PBS                                 | 0.5 h            | 1                      | 390/490                 | 44        |
| SPI       |                                 | PBS                                 | 8 min            | 0.0116                 | 413/511                 | 45        |
| 5         |                                 | HEPES                               | 40 min           | 0.1                    | 375/473                 | 46        |
| Mito-PF   | Contraction of the others       | DMSO/PBS                            | 35 min           | 0.771                  | 450/560                 | 47        |
| LDT       | CV SV CN<br>V SV SV CN<br>V SV- | Pure THF                            | 4 h              | 0.35                   | 380/450                 | 48        |
| DTP       |                                 | DMSO/HEPES                          | 5 min            | 0.044                  | 510/590                 | This work |

# Table S1 Fluorescent probe for fluoride ions based on Si-O bond cleavage

Table S2 Test the fluorescence intensity of DTP (20  $\mu$ M) containing serum in DMSO-HEPES buffer (50 mM, pH = 7.4, 9: 1, v/v).

| Number | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | SD    |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| FI     | 19.70 | 19.69 | 19.72 | 19.73 | 19.72 | 19.70 | 19.69 | 19.72 | 19.71 | 19.71 | 0.013 |