Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

miRNA	oligonucleotides	Sequence (5'-3')
miR-16	Sequences	UAGCAGCACGUAAAUAUUGGCG
	Primer-F	GTACTGCATCATCGGTCTAC
	Primer-R	CCTACAGACTACGCCAATAT
	Linker	GTACTGCATCATCGGTCTACGTACCAGAGCCAACTAGCAGCACGT-POOH
	Probe	FAM-CAGAGCCAACTAGC-MGB
cel-miR-39	Sequences	UCACCGGGUGUAAAUCAGCUUG
	Primer-F	GTACTGCATCATCGGTCTAC
	Primer-R	GAGTAACAACGCAAGCTGATTT
	Linker	GTACTGCATCATCGGTCTACGAACCAACTCAACATCACCGGGTGT-POOH
	Probe	FAM-CCAACTCAACATCA-MGB
miR-93	Sequences	CAAAGUGCUGUUCGUGCAGGUAG
	Primer-F	GTACTGCATCATCGGTCTAC
	Primer-R	TTACAGTGGTCCTACCTGCACG
	Linker	GTACTGCATCATCGGTCTACGAACTCTGACTCGCAAAGTGCTGTTC-POOH
	Probe	FAM-TCTGACTCGCAAAG-MGB
miR-21	Sequences	UAGCUUAUCAGACUGAUGUUGA
	Primer-F	GTACTGCATCATCGGTCTAC
	Primer-R	CTCAGCGTCTCAACATCAGT
	Linker	GTACTGCATCATCGGTCTACGAACATGTCCGCCTAGCTTATCAG-POOH
	Probe	FAM-ATGTCCGCCTAGCT-MGB

Supplementary Table 1. Oligonucleotides used in this study

Supplementary Table 2. The results of LoD analysis for serum direct SMOS-qPCR

Concentration	Replicates	Positive number (n)	Positive rate (%)
6×10 ³ copies/µL	20	18	90.0
3×10 ³ copies/µL	20	7	35.0
1.5×10 ³ copies/µL	20	1	5.0

Supplementary Table 3. The Sanger sequencing results of 6×10^4 copies/ μ L and 6×10^3 copies/ μ L 4-plex miRNAs with the treated serum as background.

Sample	ID	Sequence (5'-3')	
	Sense	GTACTGCATCATCGGTCTACGAACTCTGACTCGCAAAGTGCTGTTCGTGCAGGTAGGACCACTGTAA	(miR-
Referenc	strand	93)	
e	Antisens	TTACAGTGGTCCTACCTGCACGAACAGCACTTTGCGAGTCAGAGTTCGTAGACCGATGATGCAGTAC	(miR-
	e strand	93)	
6×10 ⁴ copies/μL Serum	1#	T T A CA G T G G T C C T A C C T G C A C G A A CA G C A C T T T G C G A G T C A G A G T T C G T A G A C C G A T G A T G C A G T A C	
	2#	T T A CA G T G G T C C T A C C T G C A C G A A CA G C A C T T T G C G A G T C A G A G T C G T A G A C C G A T G A T G C A G T A C A G T A G A C A G C A C T T T G C G A G T C A G A G T C A G A G T C A G A G T C A G A G T A G A C C G A T G A T G C A G T A C	
	3#	T T ACA G T G G T C C T A C C T G C A C G A A C A G C A C T T T G C G A G T C G T A G A C C G A T G A T G C A G T A C I J J J A A L P POTUBLICO A G A G T C C T A C A C A G A C A C	
	4#	G. TACTGCATCATCGGTCTACGAACTCTGGACTCGCAAGGTGCTGTTCGTGCAGGTAGGGACCACTGTAA	

Figure S1. The agarose gel electrophoresis analysis for 6×10^4 copies/ μ L and 6×10^3 copies/ μ L 4-plex miRNAs with the treated serum as background.