Supplementary Information

A novel bi-layered asymmetric membrane incorporated with demineralized dentin matrix accelerates tissue healing and bone regeneration in a rat skull defect model

Yan-Fei Li^{1,2}, Qi-Pei Luo¹, Yu-Xin Yang¹, An-Qi Li¹, Xin-Chun Zhang^{1*}

- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- 2. Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China

*Corresponding author:

Xin-Chun Zhang

Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, 56 Linyuanxi Road, Guangzhou, Guangdong 510055, China.

Tel: +86 208 380 2805

Fax: +86 208 386 2558

E-mail: <u>zhxinch@mail.sysu.edu.cn</u>

Table of contents

1. The XRD spectrum of DDM particles (Figure S1)	
2. Intergroup differences of mechanical properties between different DPP bilayer membranes in the dry state (Figure S2)	
3. Intergroup differences of mechanical properties between different DPP bilayer membranes in the wet state (Figure S3)	
4. Intergroup differences of weight loss rate between different DPP bilayer membranes after 24 w in vitro degradation (Figure S4)	.)
 5. Intergroup differences of pH value between different DPP bilayer membranes after 24 w in vitro degradation (Figure S5)	,

1. Figure S1. The XRD spectrum of DDM particles.

2. Figure S2. Intergroup differences of mechanical properties between different DPP bilayer membranes in the dry state.

The results were presented as the mean \pm standard deviation (SD) of at least three different experiments. ns: not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.

3. Figure S3. Intergroup differences of mechanical properties between different DPP bilayer membranes in the wet state.

The results were presented as the mean \pm standard deviation (SD) of at least three different experiments. ns: not significant, ** P < 0.01, *** P < 0.001.

4. Figure S4. Intergroup differences of weight loss rate between different DPP bilayer membranes after 24 w in vitro degradation.

The results were presented as the mean \pm standard deviation (SD) of at least three different experiments. ns: not significant, * P < 0.05, ** P < 0.01.

5. Figure S5. Intergroup differences of pH value between different DPP bilayer membranes after 24 w in vitro degradation.

The results were presented as the mean \pm standard deviation (SD) of at least three different experiments. ns: not significant, ** P < 0.01, *** P < 0.001.