Electronic supplementary information to

ARTICLE

Acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles for immunomodulation regulated bone regeneration

Deepa Negi, a Kumari Bhavya, a Durba Pal, and Yashveer Singha, b*

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

^aDepartment of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India. ^bDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India. Email: <u>yash@iitrpr.ac.in</u>

Electronic supplementary information to

ARTICLE

Table of contents	Page				
Quantification of biphasic calcium phosphate nanoparticles	3				
FTIR spectra of BCP, 0.02% CoBCP, 0.5% CoBCP, and 2% CoBCP.	3				
XRD spectra of BCP, 0.02% CoBCP, 0.5% CoBCP, and 2% CoBCP.	4				
Viability of RAW264.7 cells in presence of nanoparticles using MTT assay.	5				
Cell viability of MC3T3-EI cells in presence of nanoparticles using MTT assay.	6				
List of antibodies and their details.	7				
List of primers and their sequences.					
Abbreviations					
Ace: acemannan.					
BCP: biphasic calcium phosphate nanoparticles.					

CoBCP: cobalt-doped biphasic calcium phosphate nanoparticles.

RAW264.7: murine leukemic monocyte macrophage cell line.

#

Quantification of biphasic calcium phosphate nanoparticles (BCP)

Content of HAP and β -tricalcium phosphate in biphasic calcium phosphate nanoparticles

The percentage of hydroxyapatite (HAP) and β -tricalcium phosphate (β -TCP) was estimated by X-ray diffraction (XRD) technique. The XRD of biphasic calcium phosphate nanoparticles was scanned from 2° to 90°. The ratio was determined by using the ratio of intensities of the most intense diffraction peak of hydroxyapatite phase and that of β -TCP. XRD pattern of BCP indexes most intense peaks corresponds to HAP at 32.2° (816) and β -TCP at 25.8° (315). The ratio was calculated and the percentage of HAP in biphasic calcium phosphate and β -TCP were found to be 70.6% and 29.40%.

Fig. S1 FTIR spectra of BCP, 0.02% CoBCP, 0.5% CoBCP, and 2% CoBCP.

Fig. S2 XRD spectra of BCP, 0.02% CoBCP, 0.5% CoBCP, and 2% CoBCP.

Fig. S3 Viability of RAW264.7 cells in presence of nanoparticles using MTT assay. **p < 0.005 and *p < 0.05 denotes significant difference and n.s. corresponds to non-significant data (n = 3).

Fig. S4 Cell viability of MC3T3-EI cells in presence of 3%, 5%, and 7% acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles.

Table S1List of antibodies used along with their details.

No.	Antibody	Dilution	Company	Catalog No.
1	iNOS	1:400 for IF	CST	13120
2	Arginase-1	1:50 for IF	CST	AM4302
3	Anti-rabbit IgG (Alexa Fluor 488 conjugated)	5 μg/ml for ICC	Invitrogen	A-11034
4	TruStainFcX™ (anti- mouse CD16/32	0.1 μg/million cells for FC	BioLegend	101319
5	FITC anti-mouse CD86	5 μl/million cells for FC	BioLegend	105005
6	APC anti-mouse CD206	5 μl/million cells for FC	BioLegend	141707
7	Anti-rabbit IgG (Alexa Fluor 568 conjugated)	2 μg/ml for ICC	Invitrogen	A-1101
8	HRP-conjugated anti- mouse IgG antibody	1:20000 for WB	Sigma- Aldrich	A9044
9	HRP-conjugated anti- rabbit IgG antibody	1:20000 for WB	Sigma- Aldrich	A9169

Table S2List of primers and their sequences.

Mouse Primers					
No.	Gene	F.P. (5'-3')	R.P. (5′-3′)		
1	в-Actin	GTACTCTGTGTGGATCGGTGG	AGGGTGTAAAACGCAGCTCAG		
2	CD163	TGCTCAGGAAACCAATCCCA	ACCTCCACTCTTCCAGCG		
3	CD206	TTCAGCTATTGGACGCGAGG	GAATCTGACACCCAGCGGAA		
4	CD68	GGACTACATGGCGGTGGAAT	TGGTCACGGTTGCAAGAGAA		
5	iNOS	CTTGGTGAAGGGACTGAGCTG	CGTTCTCCGTTCTCTTGCAGT		