Supplementary Information for

Antibacterial Sponge for Rapid Noncompressible Hemostatic Treatment: Spatiotemporal Studies Using a Noninvasive Model

Pritha Sarkar¹, Abinaya Sindu Pugazhendhi², Melanie Coathup², Kausik Mukhopadhyay¹ ¹Department of Materials Science and Engineering, University of Central Florida, Orlando, USA. ²Biionix Cluster and College of Medicine, University of Central Florida, Orlando, USA.

SilFoam Part A	Wt.% PDMS	Wt.% Surfactant	Wt.% Ag₂O
	94	2	4
SilFoam Part B	Wt.% PDMS	Wt.% Surfactant	Wt. % H ₂ O ₂
	94	2	4

Table S1: Composition of SilFoam Part A and SilFoam Part B.

Figure S2: Viscosity of artificial blood being used. Viscosity measured to be around 4.5 cP.

Figure S3: Thermogravimetric analysis of SilFoam. SilFoam was found to be stable up to high temperatures of 350 °C.

Figure S4: Image showing dimensions of simulated torso wound on the silicone manikin.

Figure S5: Lap shear testing procedure.

Figure S6: ATR-FTIR of SilFoam Part A and SilFoam Part B.

Figure S7: EDS - Elemental Mapping of SEM micrograph of SilFoam. 65% Si and 34% O detected by EDS along with trace amounts of Ag (1%)

Figure S8: Pore size distribution of cross-section of preformed SilFoam.

Figure S9: Colony counting assays: Bacterial growth 24 hours post 24 hours of incubation (a) *E. coli*; (b) *S. aureus*