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Supplemental Table T1: Taqman Gene Primers for PCR

Gene Name Taqman Assay ID

GAPDH Hs02786624_g1

COL2A1 Hs00264051_m1

COL10A1 Hs00166657_m1

ACAN Hs00153936_m1

SCX Hs03054634_g1

SOX9 Hs00165814_m1

RUNX2 Hs01047973_m1



Supplemental Table T2: List of NanoString nCounter Panel gene targets and relevance for entheseal 
study.

Gene 
Name

HUGO 
Gene Probe NSID Category Ref.

RUNX2 RUNX2 NM_004348.3:1850 Bone, Enthesis Transcription Factor [1-4]

OSX SP7 NM_001173467.1:1510 Bone Transcription Factor [5]

OPN SPP1 NM_000582.2:760 Bone Transcription Factor [6, 7]

BSP IBSP NM_004967.3:876 Bone, Enthesis Transcription Factor [7, 8]

ALP SLPI NM_003064.2:330 Bone Transcription Factor [3, 9]

SCX SCX NM_001080514.2:550 Tendon, Enthesis Transcription Factor [4, 10-13]

TNC TNC NM_002160.3:1215 Tendon Transcription Factor [4, 14]

TNMD TNMD NM_022144.2:462 Tendon Transcription Factor [2, 15]

IGFBP5 IGFBP5 NM_000599.3:3320 Tendon Transcription Factor [4, 16]

COMP COMP NM_000095.2:1744 Tendon Transcription Factor [1, 17]

EGR1 EGR1 NM_001964.2:1505 Tendon, Enthesis Transcription Factor [14]

MKX MKX NM_173576.2:545 Tendon Transcription Factor [18]

SOX9 SOX9 NM_000346.2:2135 Cartilage, Enthesis Transcription Factor [2, 4, 10, 12, 18, 
19]

Gli1 GLI1 NM_005269.1:2885 Enthesis Transcription Factor [4, 11, 15]

KLF2 KLF2 NM_016270.2:1015 Enthesis Transcription Factor [4]

KLF4 KLF4 NM_004235.4:1980 Enthesis Transcription Factor [4]

Col1A1 COL1A1 NM_000088.3:5210 Tendon-to-Bone Matrix Marker [3, 4, 19-22]

COL2A1 COL1A2 NM_001844.4:4745 Tendon-to-Bone Matrix Marker [1, 2, 20, 23] [3, 
4, 19]

COl3A1 COL3A1 NM_000090.3:180 Tendon-to-Bone Matrix Marker [22]

COL5A1 COL5A1 NM_000093.3:872 Tendon-to-Bone Matrix Marker [4]

COL6A1 COL6A1 NM_001848.2:3665 Tendon-to-Bone Matrix Marker [22]

Col9A1 COL9A1 NM_001851.4:3198 Tendon-to-Bone Matrix Marker [2]

Col10A1 COL10A1 NM_000493.3:135 Tendon-to-Bone Matrix Marker [3, 4, 19, 21, 24]

Col11A1 COL11A1 NM_001190709.1:2490 Tendon-to-Bone Matrix Marker [4]

ACAN ACAN NM_013227.3:335 Tendon-to-Bone Matrix Marker [1, 10, 20, 21] 
[4, 19]

DCN DCN NM_001920.3:420 Tendon-to-Bone Matrix Marker [25]

BGN BGN NM_001711.3:1935 Tendon-to-Bone Matrix Marker [4]



PDGF-BB PDGFB NM_033016.2:1480 Tendon-to-Bone Growth Factor [17, 26-28]

TGFβ1 TGFB1 NM_000660.3:1260 Tendon-to-Bone Growth Factor [4, 10, 13, 24, 
29]

TGFβ3 TGFB3 NM_003239.2:706 Tendon-to-Bone Growth Factor [4, 10, 24, 29]

BMP2 BMP2 NM_001200.2:1515 Tendon-to-Bone Growth Factor [4, 10, 12, 18, 
22, 30]

BMP4 BMP4 NM_001202.3:659 Tendon-to-Bone Growth Factor [4, 10, 18, 30-
33]

BMP7 BMP7 NM_001719.1:525 Tendon-to-Bone Growth Factor [1, 4, 10, 18, 30, 
34, 35]

BMP12 
(GDF7) GDF7 NM_182828.2:954 Tendon-to-Bone Growth Factor [4, 17, 18, 28, 

30, 36]

BMP14 
(GDF5) GDF5 NM_000557.2:155 Tendon-to-Bone Growth Factor [4, 17, 18, 30, 

37]

IGF-1 IGF1 NM_000618.3:491 Tendon-to-Bone Growth Factor [28, 36, 38-41]

FGF2 
(bFGF) FGF2 NM_002006.4:620 Tendon-to-Bone Growth Factor [4, 17, 27]

FGF7 FGF7 NM_002009.3:190 Tendon-to-Bone Growth Factor [4, 22]

IHH IHH NM_002181.2:1693 Tendon-to-Bone Growth Factor [4, 10, 12, 18]

PTHrP PTHLH NM_198965.1:605 Tendon-to-Bone Growth Factor [4, 12, 13, 23]

EGF EGF NM_001963.4:1022 Tendon-to-Bone Growth Factor [42]

VEGF VEGFA NM_001025366.3:1314 Tendon-to-Bone Growth Factor [43]

SMAD3 SMAD3 NM_005902.3:4220 Tendon, Enthesis Relevant Marker [14]

MMP13 MMP13 NM_002427.2:951 Tendon-to-Bone MMP [1, 30, 44]

MMP9 MMP9 NM_004994.2:1530 Tendon-to-Bone MMP [44, 45]

MCAM MCAM NM_006500.2:2482 MSC Marker [22]

MYLK MYLK NM_053032.2:710 MSC Marker [22]

PPARγ PPARG NM_005037.5:345 Adipocyte Marker [6]

FABP4 FABP4 NM_001442.2:415 Adipocyte Marker [6]

GAPDH GAPDH NM_001256799.1:386 Housekeeping Gene [46-49]

ACTB ACTB NM_001101.2:1010 Housekeeping Gene [48, 50, 51]

IPO8 IPO8 NM_006390.2:860 Housekeeping Gene [48, 52, 53]

YWHAZ YWHAZ NM_003406.2:2345 Housekeeping Gene [49, 50]



Supplemental Figure S1: Enthesis hydrogel mechanical properties. Representative stress-strain 
diagrams for compression tests of Gel-SH hydrogels as a function of fabrication processing (non-Freeze 
Dried vs. Freeze Dried) and post-fabrication crosslinking (Non-Crosslinked vs. Crosslinked). Constructs 
used for cell activity studies are Freeze Dried and Crosslinked.



Supplemental Figure S2: Initial mean mass for Gel-SH hydrogel degradation testing. Average initial 
mass (reported as average weight from a single measurement of the aggregate mass of n=10+ individual 
hydrogel specimens) as a function of fabrication processing (non-Freeze Dried, “nFD” vs. Freeze Dried, 
“FD”) and post-fabrication crosslinking (Non-Crosslinked vs. Crosslinked). Constructs used for cell activity 
studies are Freeze Dried and Crosslinked.



Supplemental Figure S3: hMSC proliferation and invasion analysis within Gel-SH constructs. 
Images display calcein-stained live hMSCs, comparing basal and chondrogenic conditions if chondrogenic 
media is added at various times. Scale bar: 1mm



Supplemental Figure S4: Individual differentiation patterns of hMSCs in crosslinked, lyophilized 
Gel-SH hydrogels in basal growth media. Expression patterns (n=3) via nCounter mRNA expression 
panel, shown with principal component analysis, differential expression analysis, and summary bar graph. 
All bars deviating from the baseline denote a significant (p<0.05) change in expression. IGFBP5, COMP, 
and FGF7 have been omitted for scaling purposes; all are upregulated by a minimum of 10-fold by Day 21, 
with FGF7 reaching over 2500-fold by Day 21.
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Supplemental Figure S5: COL2 expression of hMSCs in crosslinked, lyophilized Gel-SH hydrogels. 
Expression patterns (n=5) for cartilage matrix protein (COL2) after 7 (Day 14) or 14 (Day 21) days of 
exposure to chondrogenic (blue) vs basal (red) media 



Supplemental Figure S6: hMSC response to differential dosage of BMP-4. In a truncated study, hMSCs 
were exposed to 2 weeks of BMP-4 supplementation after 4 days of culture; all other methods were 
conducted identically to those for chondrogenic and single biomolecule assessment



Supplemental Figure S7. Conditioned media analysis from hMSCs seeded onto tendon- or bone-
mimetic collagen scaffolds. (A-B) Relative cytokine levels (n=2) present in conditioned media relative to 
a basal media control along with (C) overall metabolic activity (n=6) and DNA concentration (n=6) of hMSCs 
within their constructs over the isolation period. 



Supplemental Figure S8: Individual differentiation patterns of hMSCs in crosslinked, lyophilized 
Gel-SH hydrogels at Day 21 of culture in response to conditioned media, relative to basal D21 
control. Expression patterns (n=3) via nCounter mRNA expression panel. All bars denote trends with a p-
value < 0.20. Absence of a bar indicates no trend with p-value <0.20. An asterisk indicates a significant 
(p<0.05) change in expression. 



Supplemental Figure S9: Complete conditioned media PCA and gene fold-change data. (A) Principal 
component analysis (left) and differential expression analysis (right) on hMSC gene expression across all 
conditioned media treatments as a function of time (D7-D21, D7 baseline). (B) Principal component analysis 
(left) and differential expression analysis (right) on hMSC gene expression between conditioned media 
treatment groups (“N” baseline) across relevant time points (D14, D21).  PCA plots denote the top four 
principal components plotted against one another, with each label denoting the corresponding row (x-axis 
plot) or column (y-axis plot) it appears in.
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