Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity

Jialin Wang ^a, Fangting Xie ^a, Qiuxia He ^a, Ruilan Gu ^a, Siqin Zhang ^a, Xueqi Su ^a, Xueping Pan ^a, Tianyu Zhang ^a, Emad Karrar ^a, Jian Li ^a, Weijing Wu ^{b, *} and Chaoxiang Chen ^{a, *}

^a Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China

^b Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian 361023, China

* Corresponding author.

E-mail address: cxchen@jmu.edu.cn, wwj@xmmc.edu.cn

Figure S1. Purity assessment of NVs. Particle concentrations of GT-HNVs, GNVs, and TNVs were analyzed using nFCM, before and after lysis with 1% Triton X-100.

Figure S2. Stability assessment of NVs. The size distribution of GT-HNVs, GNVs, and TNVs when incubated in PBS at 37 °C for varying durations was analyzed by nFCM. The results are represented as median values with interquartile ranges.

Figure S3. Cell viability of L-02 cells treated with different concentrations of H_2O_2 .

Figure S4. FCM analysis of ROS levels in L-02 cells treated with different GT-HNVs concentrations.

Figure S5. FCM analysis of mitochondria membrane potential in L-02 cells treated with different GT-HNVs concentrations.