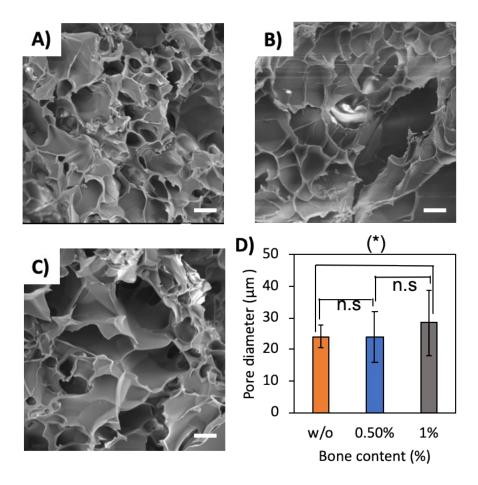

Embedded Bioprinting of Dense Cellular Constructs in Bone Allograft-Enhanced Hydrogel Matrices for Bone Tissue Engineering

Hang Truong,^{#a} Alperen Abaci,^{#a} Hadis Gharacheh,^a and Murat Guvendiren *^{a,b}


^a Otto H. York Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA

^b Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA

SUPPLEMENTARY INFORMATION

Supplementary Figure S1. ¹H NMR spectrum of methacrylated hyaluronic acid (MeHA), with the functionalization was of ~87%, determined from the integration of the vinyl group (δ =5.8, 1 H and δ =6.25, 1 H) with respect to the HA backbone (δ =3.20-4.20, 10 H).

Supplementary Figure S2. SEM images reveal porous structures for cross-sectional morphology of MeHA (A), MeHA w/ 0.5% Bone (B) and MeHA w/ 1% Bone (C) and average pore diameter (D). Scale bar: 10 μ m, n.s. denotes no significant difference, * p < 0.05. For this study, MeHA without and with 0.5% and 1% bone were prepared, lyophilized, and analyzed using Scanning Electron Microscopy (SEM).