Supporting information for

Chemical inhibition of alanylation sensitizes bacteria to phage infection

Marian Aba Addo, Zhiyu Zang, and Joseph P. Gerdt*

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA

*Corresponding author: jpgerdt@iu.edu

General Remarks

The successive pages will highlight the synthesis and characterization of 2', 3'-*O*-isopropylidene-5'-*O*-sulfamoyl-adenosine (**3**), 2', 3'-*O*-isopropylidene-5'-*O*-[*N*-(*N*-tert-butoxycarbonyl-D-alanyl)sulfamoyl]-adenosine (**4**), and 5'-*O*-[*N*-(D-alanyl)-sulfamoyl]-adenosine (**5**). All reagents and solvents including but not limited to chloroform, methanol, isopropanol, dimethylformamide (DMF), tetrahydrofuran (THF), sodium hydride (NaH), **1**,8-diazabicyclo undec-7-ene, Boc-Dalanine hydroxysuccinimide ester (Boc-D-ala-Osu), and 2', 3'-*O*-isopropylidene-adenosine were obtained commercially (**Supplementary Table 1**). All hydrogen (¹H, 500 MHz) and carbon-13 (¹³C, 125 MHz) NMR spectra were recorded in deuterated dimethyl sulfoxide (DMSO-d6) using Varian or Bruker NMR. Chemical shifts were reported in parts per million (δ scale) and coupling constant (J values) are listed in Hertz (Hz). High performance liquid chromatography (HPLC) of final product was performed with Agilent 1260 Infinity II using a Synergi 10 µM HydroRP column. High resolution mass spectrometry data of final product was obtained with Thermo-Scientific Finingan LTQ Orbitrap XL using electrospray ionization (ESI).

2',3'-O-Isopropylidene-5'-O-sulfamoyl-adenosine (3):

To a nitrogen-purged 50 mL round bottom flask with a suspension of 156.8 mg (3.25 mmol) sodium hydride (60% in mineral oil) in 8 mL THF was added four portions of 2',3'-O-isopropyliden-adensosine (1) (517.3 mg, 1.63 mmol total). The reaction was stirred for 75 min at 55°C, and the mixture cooled to 0°C. A solution of sulfamoyl chloride (2) (297.0 mg, 3.35 mmol) in 4 mL THF was made and added dropwise over 30 min, while the temperature was maintained at 1-3°C. The reaction mixture was stirred for an additional 3 h at 0°C. The reaction was quenched with 2 mL methanol. The solvents were removed in vacuo and crude residue was used for the subsequent reaction with no purification. The presence of desired product was validated by LC-MS and ¹H NMR of the crude mixture.¹

2', 3'-O-isopropylidene-5'-O-[N-(N-tert-butoxycarbonyl-D-alanyl)-sulfamoyl-adenosine (5):

With 2',3'-*O*-isopropylidene-5'-*O*-sulfamoyl-adensosine (**3**) in hand, 8 mL of DMF was added to form a solution, followed by subsequent addition of DBU (193 μ L, 1.04 mmol). A solution of 372.3 mg (1.04 mmol) Boc-D-ala-Osu (**4**) in 1 mL DMF was added over 30 min to the reaction. The mixture was stirred for 3 h at room temperature. Then organic solvents were removed in vacuo, and the crude residue was used for subsequent reaction with no purification. The presence of desired product was validated by LC-MS and ¹H NMR of the crude mixture.²

Scheme 1. Synthesis of 5'-O-[N-(D-alanyl)-sulfamoyl]-adenosine

5'-O-[N-(D-alanyl)-sulfamoyl-adenosine (6):

The 2',3'-*O*-isopropylidene-5'-*O*-[*N*-(*N*-tert-butoxycarbonyl-D-alanyl)-sulfamoyl-adenosine (5) residue was taken up in 10 mL of water and 10 mL of TFA was added. The mixture was stirred at room temperature for 3h. After the solvents were removed in vacuo, the residue was dissolved in water and purified by HPLC. The following gradient was used at a flow rate of 10 mL/min. Buffer A was 0.01% (v/v) TFA in water, and buffer B was 0.01% (v/v) TFA in acetonitrile. The sample was injected at 100% (v/v) buffer A, and a linear gradient performed at 0–5% buffer B was performed for 30 min. A second linear gradient was performed over the next 10 min from 5%–100% (v/v) buffer B, followed by holding 100% buffer B for 8 min. The column was then reequilibrated with 100% (v/v) buffer A. After pooling purified product from multiple runs, 77.8 mg (0.19 mmol, 16%) of pure deprotected adenosine sulfonamide (**6**) was isolated. Analytical data for (**6**): ¹H NMR (500 MHz, DMSO-d₆) δ 8.49 (s, 1H), 8.26 (s, 1H), 7.83 (s, 3H), 5.94 (d, J = 5.7 Hz, 1H), 4.59 (t, J = 5.3 Hz, 1H), 4.23 – 4.17 (m, 2H), 4.14 – 4.11 (m, 2H), 4.10 – 4.08 (m, 1H), 1.30 (d, J = 7.1 Hz, 3H).¹³C NMR (125 MHz, DMSO-d₆) δ 17.47, 50.93, 68.80, 71.02, 74.31, 83.03, 88.01, 119.20, 141.49, 148.76, 149.35, 153.17, 172.97. HRMS: 418.1139 [M + H^{*}].

Figure S1. ¹H NMR of 5'-*O*-[*N*-(D-alanyl)-sulfamoyl]-adenosine (6) taken in DMSO-D₆.

Figure S2.¹³C NMR of 5'-O-[N-(D-alanyl)-sulfamoyl]-adenosine (6) taken in DMSO-D₆.

Figure S3. Phi29 response to DltA inhibitor at different concentrations. Plot of Phi29 plaque area monitored over time in the presence DMSO and different concentrations of DltA inhibitor. Plaque assays were performed in three biological replicates with \sim 20-40 plaques measured per replicate. Error bars represent SEM (n=3).

Figure S4. Dose response of DItA inhibitor with *B. subtlis* **PY79 in the absence of phage.** A) Growth curves of PY79 bacteria after different concentration of chemical inhibitor treatment. B) Dose response of inhibitor's impact on OD600 after 9 hours of treatment. Plots are biological replicates. Error bars represent SEM (n=3).

ldentity (%)	Consensus	:*:	::** XXXXXXXXXXXXXXXXXXXXXXXXXX	
47.83	Enterococcus faecalis (WP_083578577.1)	KVINMIQTIDEWARKEPQR	PVYLTEEKVSTYGELKE	38
45.88	Staphylococcus aureus (WP_274822980.1)	DIINKLQAFADANPQS	IAVRHTTDELTYQQLMD	35
39.02	Clostridioides difficile (WP_021359631.1)	IIEGIKKYSNTDR	TALMCNGDKLSYKDLNE	32
39.72	Streptococcus pneumoniae (WP_000066733.1)	NKPIADMIETIEHFAQTQPSY	PVYNVLGQEHTYGDLKA	40
: ::. XSDXLAXX	: :.:: . ::: * . LXXXXXXXXX P X V X G X X X X M X X X X G A X K)	.*:*.* : :*: :. XYXPXDXXXPXXRXXXIXXXA	* XPXXXXXXXXXXXXX	
KSDNLAAY	LAELKT-DKSAIVVYGELDFEMIVSFLGASKA	SYIPIDAHTPKERIELILNVA	KPTAVIAVHEWPELAT-	116
ESSKLAHR	LQGSKKPMILFGHMSPYMIVGMIGAIKA	GYVPVDTSIPEDRIKMIINKA	QPEFVFNTTDESFESLE	111
YSDAISVF	LKDVYKEEDTPIVIYGNKENMIMACMIGALKS	AYVPLDISFPIDRVFEVTKEI	KPKVLFNFSDEKDF	109
DSDSLAAV	IDQLGLPEKSPVVVFGGQEYEMLATFVALTKS	AYIPIDSHSALERVSAILEVA	EPSLIIAISAFPLEQV-	119
*.		**.**.*****::* :*:	.*	
<u> </u>	××××× ××××××××××××××××××××××××××××	SGXTGXPKGVQISXXNLXSFT	× ₩ × × × × × × - × × × × × × × × × ×	
- E V P V I T A	EELTEMMMHAPRYAPALTPVTGASNYYII	SGTTGVPKGVQISHDNLVSFT	NWLLQDFGLEEGARF	190
GEVFTIED	IKTSQDPVIFDSQIKDNDTVYT1	SGSTGEPKGVQIEYASLVQFT	EWMLE-L-NKSGNEQQW	180
GDINVIDM	DKLNYIINEYQGKSLDKENWVKDDENAYIL	SGSTGKPKGVQISSNNLDSFS	DWISPYL-NIDGSEKVI	186
-STPMINL	AQVQE AFAQGNNYE - ITHPVKGDDNYYI I	SGITGKPKGVQISHDNLLSFT	NWMITDKEFATPSRPQM	194
: . * . : : * *	* * * * : * : * : *		::.: .:.: :.*	
L×Q×PYSF	DLSVMXIYPXLAXGGTLXXXXXXXXDXKXLF	XXXXXIXXWVSTPSFXXXCXX	XXXFNXEXXPXLXXFXF	
LAQAPYSF	DLSVMSIYPALALGGSLTPLPNEIINDFKQLF	LPQLTIDVWVSTPSFIELCLM	EPSFDGEHLPALRTFLF	270
LNQAPFSF	DLSVMAIYPCLASGGTLNLVDKNMINKPKLLN	LTATPINIWVSTPSFMEMCLL	LPTLNEEQYGSLNEFFF	260
MNQPAYSF	DLSVTTIYPGLIHGATLFSISKDVLADYKELF	FSISDIAVWVSTPSFAGVCIT	EKEFNSKMLPNLESMIF	266
LAQPPYSF	DLSVMYWAPTLALGGTLFTLPSVITQDFKQLF	IFSLPIAIWTSTPSFADMAML	SEYFNSEKMPGITHFYF	274
** *	. : * * * * . : . * . * . * * * * *	:.:**:*.		
XGEXLXXX	XAXXLXXRFPXAXIXNXYGPTEATVAXSXXXX	EXLXXXXLPXGYXXXXXXX	IXXXXG-XXLXXXEXGE	
CGEELPKS	TAEKLAARFPTAHIYNTYGPTEATVAISAIEI	EVLKSVQRLPIGYVKEDTQIY	IMEGMSKLPAGEIGE	348
CGEILPHR	AAKALVNRFPSATIYNTYGPTEATVAVTSIQI	EILDQYPTLPVG	- VERPG - ARLSTTDEGE	329
IGEALSKN	LTKELMSRFPNTRIINGYGPTEATVGVSVNDM	KAIDDEKSLPVGYPMSNCKIK	ILDEDG-NELKENEKGE	345
DGEELTVK	TAQKLRERFPNARIINAYGPTEATVALSAVAV	EMLATLKRLPIGYTKADSPTF	IIDEEG-NKLPNGEQGE	353
::: *::*	* . * * . : * . * * . * . * . * . * . *	. : : ** ****::	*:*:*:*::*	
IXIXGPSV	SKGY×NN××KTAE×FF××××DG××AY×TGC	×××D-G×××Y×GR×DFQIKLN	GYRIELEXXXXXLXXXX	
IVIAGPSV	SKGYLNNPAKTAEAFF QLDGV PAYRTGD	KLVD-NLLQYEGRLDFQIKLH	GYRIELEEVDHHLTNVS	423
LVIEGQSV	SLGYLKNDQKTAEVFNFD DGI RTYHTGD	KFEN-GQWFIQGRIDFQIKLN	GYRMELEEIETQLRQSE	404
IIIIGPSV	SKGYFNNKEKTDEVFFYDEIDGVKWRAYKTGD	YLLD-GNIYYCGRKDFQIKLN	GFRIEIEDIENNLRKVH	424
IIVSGPAV	SKGYMNNPEKTAEAFFEFEDLPAYHTGD	TMTDEGLLLYGGRMDFQIKFN	GYRIELEDVSQNLNKSR	429
.:: *:::	* * :*: .* :	. * * . : * * * : * . : :	*	
Χνκχαννν	PXY-KXXKVXXLXXXVXXXXXXXXXXXXX	XIKXXLXXXXXYMIPXKFXX	XXXLPLTXNGKIDRKXL	
YVKQAVVV	PKY-QGNKVQQLIAYVVPQAHEFSSDFQL	AIKQELATLTMDYMIPQKFVY	VEQLPLTSNGKIDRKGL	499
FVKEAIVV	PVY-KNDKVIHLIGAIVPTTEVTDNAEM	NIKNDLKSRLPEYMIPRKFEW	MEQLPLTSNGKIDRKKI	479
NVKNAVVL	PVY-KDEKIAYLKGIVELNEKNDLSNIKN	IIKKELGKYIPSYMIPRNISI	ISEFPTNINGKIDRKKL	500
FIESAVAV	PRYNKDHKVQNLLAYVILKDGVREQFERDTDI	AIKEDLTDIMMSYMMPSKFLY	RDSLPLTPNGKIDIKGL	509
AAEANAA				
MNEVNAT	506			
MEET	400 504			
INEVNKR	516			

Figure S5. DltA protein is widespread in firmicutes. Alignments and percent identity scores of DltA protein found across different pathogens to the *B. subtilis* (WP_369340711.1) DltA protein query sequence using Blastp.

Table S1. Chemical reagents for the synthesis of 5'-O-[N-(D-alanyl)-sulfamoyl]-adenosine.

Regent

Source

Reaction solvents

Sigma Aldrich

Sodium hydride	Sigma Aldrich
Boc-D-alanine hydroxysuccinimide ester	BACHEM
2', 3'-O-isoproylidene-adenosine	Sigma Aldrich

Table S2. List of bacteria strains used in this work and the source obtained

Strain	Source
B. subtilis PY79	Bacillus Genetic Stock Center (BGSC), (1A747)
B. subtilis W23	BGSC, (2A9)
<i>B</i> . subtilis $\Delta 6$	BGSC, (1A1299)
B. subtilis 168 trpC2 ∆dltA::ErmR	BGSC, (BKE38500)
B. subtilis PY79 ∆dltA::ErmR	This work
B. subtilis PY79 (amyE:: _{Phyper-spank} —sigX-spC) (ET28)	Prof. Sigal Ben-Yehuda, The Hebrew University of Jerusalem ³
*Erm = Erythromycin	

**Cam = Chloramphenicol

Table S3. List of phages used and source obtained.

Phage	Source
Phi29	BGSC
SPP1	BGSC
SPO1	Prof. Daniel Kearns, Indiana University
SP50	University of Laval
PBS1	Daniel Schwartz, Indiana University
vB_BsuM-Goe2	Daniel Schwartz, Indiana University

Table S4. Primers used in this work and source obtained.

Primer	Source
ErmR815 (Forward) 5' CCTTAAAACATGCAGGAATTGACG 3'	Integrated DNA Technologies (IDT)
3pR GT (Reverse) 5' CATCAGAACGGCGTGATAG 3'	IDT

References

- May, J. J.; Finking, R.; Wiegeshoff, F.; Weber, T. T.; Bandur, N.; Koert, U.; Marahiel, M. A. Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. *FEBS Journal* 2005, *272* (12), 2993-3003. DOI: 10.1111/j.1742-4658.2005.04700.x.
- (2) Castro-Pichel, J.; García-López, M. T.; De las Heras, F. G. A facile synthesis of ascamycin and related analogues. *Tetrahedron* **1987**, *43* (2), 383-389. DOI: 10.1016/s0040-4020(01)89967-1.
- (3) Tzipilevich, E.; Pollak-Fiyaksel, O.; Shraiteh, B.; Ben-Yehuda, S. Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. *EMBO J* **2022**, *41* (3), e109247. DOI: 10.15252/embj.2021109247.