Supplementary Information

Insights into docking in megasynthases from investigation of the toblerol *trans*-AT polyketide synthase: many α -helical means to an end[†]

Serge Scat,^a Kira J. Weissman^{*a} and Benjamin Chagot^{*a}

Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France

* E-mail: kira.weissman@univ-lorraine.fr and Benjamin.chagot@univ-lorraine.fr

Supplementary Figures

a TobC ^CDD

b

TobE ^NDD

Fig. S1 Bioinformatics analysis of the TobC/TobE interface. The analyses of TobC ^CDD and TobE ^NDD are shown in panels (a) and (b), respectively. Secondary structure prediction was carried out using PSIPRED (top, with potential α -helices indicated in red),¹ and the intrinsic disorder/interaction propensity prediction was predicted using the IUPred2A interface² (bottom). IUPred2 indicates the disorder tendency of each residue in a given protein, with higher values corresponding to a higher probability of disorder. ANCHOR2 predicts the probability of each residue belonging to a region involved in binding. Key: Conf. is the confidence score of the prediction (from 0 (lowest) to 9 (highest)); Pred. is the type of secondary structure predicted (C = coil, H = helix and E = sheet); AA is the amino acid sequence.

Fig. S2 SDS-PAGE analysis of the constructs used in this study. TobC ^CDD (calc'd: 6.64 kDa); TobE ^NDD (calc'd: 5.02 kDa); TobE ^NDD-ACP (calc'd: 14.71 kDa); TobC ^CDD R2271A (calc'd: 6.55 kDa); TobC ^CDD R2271A/R2278A (calc'd: 6.47 kDa). The molecular weights of the markers are indicated.

Fig. S3 Gel filtration analysis of the interaction between TobC ^CDD and TobE ^NDD (both at 400 μ M). TobC ^CDD eluted at a volume of 12.9 mL and TobE ^NDD at 13.7 mL. When mixed (individual concentrations of 400 μ M), a single peak was observed at a lower elution volume of 12.3 mL, consistent with formation of a complex.

Fig. S4 Circular dichroism analysis of TobE ^NDD and TobC ^CDD. (a) Circular dichroism analysis of individual TobC ^CDD and TobE ^NDD (100 μ M). The % α -helix calculated using the Pro-Data Viewer software (Applied Photophysics) under the two conditions is indicated. (b) CD analysis showing the superposition of the combined spectrum of the isolated DDs and the computed average of the two individual DD spectra.

Fig. S5 AlphaFold2³ structure predictions (top) and associated PAE Matrix Score (bottom). (a) Prediction for TobC ^CDD. (b) Prediction for TobE ^NDD. (c) Prediction for the TobE ^NDD/TobC ^CDD complex. All models have been relaxed using Amber. The five predicted models are superimposed and the residues are colored according to a per-residue confidence metric called pLDDT:³ very high (pLDDT > 90) (blue), confident (90 > pLDDT > 70) (cyan), low (70 > pLDDT > 50) (yellow) and very low (pLDDT < 50) (orange). The N- and C- termini of the models are labeled (N_C and C_C for the ^CDD and N_N and C_N for the ^NDD).

Fig. S6 ITC and CD analysis of single point mutations. (a) CD analysis of TobC ^CDD mutants at 100 μ M. TobC ^CDD wildtype is shown in black. (b) CD analysis for structuration upon mixing TobC ^CDD R2271A mutant and TobE ^NDD. The combined spectrum was obtained by simultaneously analyzing the two isolated docking domains (both at 100 μ M). Comparison with the spectrum of a mixture of the two DDs (again at an overall concentration of 100 μ M), demonstrates a lack of increased structuration upon mixing. (c) Analysis by ITC of binding between the mutant TobC ^CDD R2271A in the syringe and TobE ^NDD in the cell. To ensure data fitting, the stoichiometry was set to 1.

Fig. S7 Comparison between 4 α -helix bundle (4HB) docking domains and the TobC ^CDD/TobE ^NDD complex fold. (a) TobC ^CDD. (b) VirA ^CDD (PDB ID: 2N5D⁴). (c) VirFG ^NDD (PDB ID: 2N5D⁴). (d) MlnE ^NDD (PDB ID: 5D2E⁵). (e)–(f) Structures and comparison between Vir and Tob docking complexes. (e) Complex between TobC ^CDD (red) and TobE ^NDD (blue). (f) Complex between VirA ^CDD (grey) and VirFG ^NDD (purple). (g) Sequence alignment between TobC ^CDD and 4HB docking domains. The ^CDD and ^NDD α -helices are colored red and blue, respectively.

Fig. S8 Sequence and structure comparison of individual and complexed DDs. (a) Sequence alignment of type 2(related) ^CDDs whose structures have been determined. The strips highlight the conserved aliphatic residues. Conserved residues mediating electrostatic interactions are highlighted by a star. (b) Structure comparison of type 2(-related) ^CDDs (aliphatic residues are colored in yellow and aromatic in purple) and the α -helices are represented as cylinders. The ^CDD names and PDB codes of the structures are indicated. (c) Sequence alignment of type 2(related) ^NDDs whose structures have been determined. Conserved aliphatic residues are highlighted by a blue strip. The letters a and d indicate the first and fourth residues of the heptad repeats. (d) Structure comparison of type 2(-

related) ^NDDs. Conserved residues are indicated on the structures in stick form (aliphatic residues are colored in yellow and acidic in red), and the α -helices are represented as cylinders. The ^NDD names and PDB codes of the structures are indicated. (e) Structure comparison of type 2(-related) ^CDD/^NDD complexes. The names of the DDs are indicated, with ^CDDs colored red and ^NDDs colored blue. Conserved residues participating in electrostatic interactions are represented as sticks and are labeled and numbered, with basic residues colored blue, acidic red and polar green. α -Helices are represented as cylinders, and the N- and C-termini are labeled. (f) Structure comparisons of type 2(-related) and type 1(-related) ^CDD/^NDD complexes (alongside the coiled-coil formed by extended CurL ^NDD). The names of the DDs are indicated with ^CDDs colored red and ^NDDs colored blue. α -Helices are represented as cylinders, and the N- and C-termini are labeled. (f) Structure comparisons of type 2(-related) and type 1(-related) ^CDD/^NDD complexes (alongside the coiled-coil formed by extended CurL ^NDD). The names of the DDs are indicated with ^CDDs colored red and ^NDDs colored blue. α -Helices are represented as cylinders, and the N- and C-termini are labeled.

Supplementary Tables

Construct	Sequence ^a	Molecular weight
TobE ^N DD	GPGSYMTHFEDHRVGSDRLAADGEISADEALSMLDAIG TGQSTPTGADD	5023.32 Da
TobC ^C DD	GPGSPNSYLPAENEDPDKAVVDLHRSPPKTKDPDLTPS GIIAKVKAGDMTQETARELLLAMR	6640.50 Da
TobE ^N DD-ACP	GPGSMTHFEDHRVGSDRLAADGEISADEALSMLDAIGT GQSTPTGADDLKARIVQDLGLLIASVLKLQLEDLSPGRT WMDYGLDSIASTELATLFTEKYGLSLPPTIFFEFQNIDSF ADYLLSSHRVQLEKKYSV	14712.50 Da
TobC ^C DD R2271A	GPGSPNSYLPAENEDPDKAVVDLHRSPPKTKDPDLTPS GIIAKVKAGDMTQETAAELLLAMR	6555.39 Da
TobC ^C DD R2278A	GPGSPNSYLPAENEDPDKAVVDLHRSPPKTKDPDLTPS GIIAKVKAGDMTQETARELLLAMA	6555.39 Da
TobC ^C DD R2271A-R2278A	GPGSPNSYLPAENEDPDKAVVDLHRSPPKTKDPDLTPS GIIAKVKAGDMTQETAAELLLAMA	6470.29 Da

Table S1 Sequences of constructs used in this study, and calculated molecular weights

^aRed: sequence introduced from the cloning procedure; green: added Tyr residue; yellow: introduced mutation.

Construct	Primer Type	Oligonucleotide (5'-3') ^a
Cloning		
TobE ^N DD	f r	TTTCCG <u>GGATCC</u> TATATGACGCACTTCGAGGAC TTTCCG <u>GCTAGC</u> TCAATCGTCCGCGCCGG
TobC ^C DD	f r	TTTCCG <u>GAATTCg</u> TATCTACCTGCAGAGAACGAGGATCC TTTCCG <u>AAGCTT</u> TCAGCGCATGGCAAGCAG
TobE ^N DD-ACP	f r	TTTCCG <u>GGATCC</u> ATGACGCACTTCGAGGAC TTTCCG <u>GCTAGC</u> TCAGACCGAATACTTTTTTCCAATTGG
Mutagenesis		
TobC ^C DD R2271A	f r	CAGGAGACCGCCGCCGAGCTGCTGCTT AAGCAGCAGCTCGGCGGCGGCGGTCTCCTG
TobC ^C DD R2278A	f r	CTGCTGCTTGCCATGGCCTGAAAGCTTGCGGCC GGCCGCAAGCTTTCAGGCCATGGCAAGCAGCAG

Table S2 Primers used in this study

^aIntroduced restriction sites are underlined and the base pairs coding for an additional Tyr or stop codon are indicated in bold. In the case of TobC ^CDD, an additional base (in lower case) was introduced to conserve the reading frame.

Restraints used for	structure calculation				
Distance restraints				TobC ^C DD	TobE ^N DD
Total				784	394
Intraresidue				256	134
Sequential				259	165
Medium range				168	79
Long range				101	16
Intermolecular			171		
Dihedral angle rest	raints			46	22
	/				
Constraint violation	ns, mean \pm SD ⁶				
Distance violations					
$0.1 < d \le 0.2$ Å					0.15 ± 0.37
d > 0.2 Å					0
Average maximum	distance violations (Å)				0.08 ± 0.02
Torsion angle viola	tions				
θ <= 5.0 °					0
$\theta > 5.0^{\circ}$					0
Average maximum	torsion angle violations (°)				0.0
U	6				
Amber energies, m	$ean \pm SD (kcal mol^{-1})^{6}$				
Distance restraint					1.0 ± 0.2
Torsion restraint					0.001 ± 0.005
Van der Waals					-581 ± 13
Total molecular					-4469 + 14
Total molecular					1407 ± 14
Precision, RMSD f	rom the mean (Å)				
,	TobC ^C DD P2249–M2277 and	d TobE ^N DD	TobC ^C DD L2	251–R2278 a	and TobE ^N DD
	I20-A31 (defined as ordered b	by PSVS ⁷)	E19-G33		
Backbone	0.76 ± 0.25		0.59 ± 0.13		
All heavy atoms	1.22 ± 0.21		1.11 ± 0.12		
Ramachandran stat	istics (%) ⁸				
	W	hole construct	P2249–N with PSV	12277, I20–A S 1.5 ⁷	31 calculated
Most favored	82	2.4	98.1		
Additionally allowed	ed 15	5.1	1.9		
Generously allowed	1 1.	8	0.0		
Disallowed	0.	7	0.0		
MolProbity scores	(percentiles) for the lowest-restra	aint energy stru	icture ⁹		

Table S3 Structural statistics specified by the NMR Validation Task Force

MolProbity score

1.05 100th percentile

Clash score all-atom

0 100th percentile

Global quality scores (raw score/Z-score) calculated with PSVS 1.57			
Verify3D		$0.16 \pm 0.02/-4.82$	
ProsaII		$0.68 \pm 0.06 / 0.12$	
Procheck G-factor (phi-psi)	P2249-M2277, I20-A31	0.41/1.93	
Procheck G-factor (all)	P2249-M2277, I20-A31	0.36/2.13	
Molprobity clashscore		$0.16 \pm 0.45 / 1.50$	
Deviations from ideal geometry ⁶			
RMS deviation for bond angles		$2.25^\circ\pm0.02$	
RMS deviation for bond lengths	$0.011~{\rm \AA}\pm 0.001$		

Protein	Type of complex formed	Helix 1	Helix 2	Angle
TobC ^C DD	3HBb	P2253-A2262	Q2267-R2278	$176 \pm 2^{\circ}$
VirFG ^N DD	4HB	D2-D12	D16-G26	$172 \pm 2^{\circ}$
MlnE ^N DD	4HB	T5-E17	T21-S31	166°
VirA ^C DD	4HB	S6935-D6948	S6952-L6959	$162 \pm 4^{\circ}$
CurG ^C DD	2	E1555-Q1564	S1566-N1583	$116 \pm 1^{\circ}$
CurH ^N DD	2	M1-Q20	S22-L42	$141\pm9^{\circ}$
CurK ^C DD	2	D2208-L2212	S2213-S2232	$125\pm2^\circ$
Bam_5925 ^C DD	2-related	T2620-E2626	Q2629-G2638	$125\pm6^{\circ}$
Bam_5924 NDD	2-related	G9-L21	S22-L28	$135\pm3^{\circ}$
PaxA_T1 ^C DD	*	C1062-F1071	A1073-K1081	$118\pm3^{\circ}$
PaxB ^N DD	*	N2-L9	P10-K25	$131\pm3^{\circ}$
PaxB ^C DD	ЗНВа	F3293-E3305	S3308-G3318	$119\pm3^{\circ}$
PikAIII ^c DD	1b	S1543-D1546	A1549-A1556	$132\pm5^\circ$

Table S4 Summary of docking domain inter α -helix angles

*: In this case, the individual DDs resemble type 2(-related) domains, but the overall complex has not yet been classified.

Protein 1 (residues) (DD type ^a)	Protein 2 (residues) (DD type ^a)	RMSD
	VirA ^C DD (A6941–L6960) (4HB)	$0.56\pm0.07~\text{\AA}$
TobC ^C DD (G2255–L2274) (<i>3HBb</i>)	VirFG ^N DD (E5–L24) (4HB)	$0.56\pm0.05~\text{\AA}$
	MlnE ^N DD (Q10–I29) (4HB)	$0.74\pm0.06~\text{\AA}$
MI-E NDD (010, 120) (4118)	VirFG ^N DD (E5–L24) (4HB)	$0.90\pm0.06~\text{\AA}$
Mille DD (Q10-129) (4HB)	VirA ^C DD (A6941–L6960) (4HB)	$0.88\pm0.06~\text{\AA}$
VirA ^C DD (A6941–L6960) (4HB)	VirFG ^N DD (E5–L24) (4HB)	$0.68\pm0.08~\text{\AA}$
$\mathbf{P}_{av}\mathbf{R}^{N}\mathbf{D}\mathbf{D}(\mathbf{N}/-\mathbf{A}21)(*)$	CurH ^N DD (Q16-K33) (2)	$0.64\pm0.05~\text{\AA}$
	Bam_5924 NDD (S16-L33) (2-related)	$0.39\pm0.09~\text{\AA}$
PaxC ^N DD (L11–Q25) (3HBa)	CurL ^N DD (L16–L30) (PDB ID: 4MYZ) (2)	$0.59\pm0.09~\text{\AA}$
	CurG ^c DD (L1558–I1574) (2)	$0.71\pm0.13~\text{\AA}$
PaxB ^C DD (V3300–L3316) (3HBa)	Bam_5925 ^c DD (E2621–L2637) (2-related)	$0.87\pm0.06~\text{\AA}$
	PaxA_T1 ^c DD (I1064-Y1080) (*)	$1.40\pm0.10~\text{\AA}$
\mathbf{D}_{0X} (11064–V1080) (*)	Bam_5925 ^c DD (E2621–L2637) (2-related)	$1.41\pm0.09~\text{\AA}$
FaxA_11_DD (11004-11080) (*)	CurG ^C DD (L1558–I1574) (2)	$1.30\pm0.10~\text{\AA}$
	Bam_5925 ^c DD (E2624–L2637) (2-related)	$0.95\pm0.14~\text{\AA}$
$C_{\rm W} = V^{\rm C} DD (D2208 - V2221) (2)$	CurG ^C DD (E1561–I1574) (2)	$0.69\pm0.13~\text{\AA}$
Curk DD $(D2208 - V2221)(2)$	PaxB ^c DD (E3303–L3316) (3HBa)	$0.92\pm0.11~\text{\AA}$
	PaxA_T1 ^c DD (Q1067-Y1080) (*)	$1.29\pm0.16~\text{\AA}$
	CurK ^C DD (D2208–V2221) (2)	$0.58\pm0.15~\text{\AA}$
	CurG ^C DD (E1561–I1574) (2)	$0.54\pm0.04~\text{\AA}$
PikAIII ^c DD (S1543–A1556) (<i>1b</i>)	Bam_5925 ^c DD (E2624–L2637) (2-related)	$0.69\pm0.08~\text{\AA}$
	PaxB ^c DD (E3303–L3316) (<i>3HBa</i>)	$0.74\pm0.05~\text{\AA}$
	PaxA_T1 ^C DD (Q1067-Y1080) (*)	$1.38\pm0.05~\text{\AA}$
Complex 1 (residues) (DD type)	Complex 2 (residues) (DD type)	RMSD
PaxB ^C DD/PaxC ^N DD	CurG ^c DD/CurH ^N DD (L1558–I1574/S22–K33) (2)	$1.13\pm0.07~\text{\AA}$
(V3300–L3316/D9–I20) (<i>3HBa</i>)	Bam_5925 ^C DD/Bam_5924 ^N DD (E2621–L2637/S22–L33) (2-related)	$1.18\pm0.07~{\AA}$
CurK ^C DD/CurL ^N DD ^b (D2208–K2230/S12–K32) (<i>2</i>)	CurG ^c DD/CurH ^N DD (E1561–N1583/ Q20–N40) (<i>2</i>)	1.96 Å
CurL ^N DD/CurL ^N DD ^b (PDB ID: 4MYZ) (S12–T35) (2)	CurL ^N DD CurL ^N DD (PDB ID: 4MZ0) (S12–T35) (2)	1.66 Å
CurK ^C DD/CurL ^N DD (I2215–E2226/S14–K32) (2)	DEBS 2 ^c DD/ DEBS 3 ^N DD (D3551–G3562/R14–E32) (<i>1a</i>)	2.51 ± 0.20 Å
CurK ^C DD/CurL ^N DD (D2208–L2222/S14–E31) (2)	PikAIII ^C DD/ PikAIV ^N DD (S1543–L1557/D10–R27) (<i>1b</i>)	2.05 Å
CurK ^C DD/CurL ^N DD (I2209–E2226/S14–E31) (2)	Bam_5920 ^c DD/5919 ^N DD (D2956–G2973/Q6–Q23) (<i>1-related</i>)	$1.77\pm0.12~\text{\AA}$
CurK ^c DD/CurL ^N DD (D2208–V2221/S14–K29) (<i>2</i>)	Bam_5925 ^c DD/5924 ^N DD (E2624–L2637/S22–Q37) (2-related)	5.72 ± 0.11 Å

Table S5 Summary of RMSDs calculated between proteins or complexes in this study

PikAIII ^c DD/ PikAIV ^N DD (L1547–L1557/S3–R29) (<i>1b</i>)	DEBS 2 ^c DD/ DEBS 3 ^N DD (A3548–D3558/M7–V33) (<i>1a</i>)	$2.54\pm0.10~\text{\AA}$
PikAIII ^C DD/ PikAIV ^N DD (S1543–G1558/D10–D31) (<i>1b</i>)	CurG ^c DD/CurH ^N DD (E1561–Q1576/S22–H43) (<i>2</i>)	2.03 Å
PikAIII ^c DD/ PikAIV ^N DD (11544–G1558/N5–Q34) (<i>1b</i>)	Bam_5920 ^c DD/5919 ^N DD (D2956–Q2970/M1–R30) (1-related)	$2.46\pm0.15~\text{\AA}$
PikAIII ^c DD/ PikAIV ^N DD (S1543–A1556/A11–S26) (<i>1b</i>)	Bam_5925 ^c DD/5924 ^N DD (E2624–L2637/S22–Q37) (2-related)	$5.79\pm0.11~\text{\AA}$
DEBS 2 ^C DD/ DEBS 3 ^N DD (A3548–G3562/R14–H35) (<i>1a</i>)	CurG ^c DD/CurH ^N DD (S1565–E1579/S22–H43) (<i>2</i>)	$2.06\pm0.08~\text{\AA}$
DEBS 2 ^C DD/ DEBS 3 ^N DD (A3548–G3563/L12–R36) (<i>1a</i>)	Bam_5920 ^c DD/5919 ^N DD (L2959–D2974/I4–A28) (1-related)	$2.48\pm0.17~\text{\AA}$
DEBS 2 ^c DD/ DEBS 3 ^N DD (S3549–L3557/Y15–L30) (<i>1a</i>)	Bam_5925 ^c DD/5924 ^N DD (Q2629–L2637/S22–Q37) (2-related)	$4.63\pm0.11~\text{\AA}$
CurG ^c DD/CurH ^N DD (11562–E1579/ S22–H43) (2)	Bam_5920 ^c DD/5919 ^N DD (D2956–G2973/Q6–Q27) (1-related)	$1.71\pm0.11~\text{\AA}$
CurG ^c DD/CurH ^N DD (E1561–I1574/ Q17–K37) (2)	Bam_5925 ^c DD/5924 ^N DD (E2624–L2637/R17–Q37) (2-related)	$5.64\pm0.11~\text{\AA}$
Bam_5920 ^c DD/5919 ^N DD (D2956–L2968/L7–N22) (1-related)	Bam_5925 ^c DD/5924 ^N DD (I2625–L2637/S22–Q37) (2-related)	$5.45\pm0.17~\text{\AA}$

^aThe 'type' designations refer to the initial classification of the DDs based on their structures within the docked complexes. *: In this case, the individual DDs resemble type 2(-related) domains, but the overall complex has not yet been classified.

Protein 1 (DD type ^a)	Protein 2 (DD type ^a)	TM score (min/max)
	VirFG ^N DD (D2–A25) (4HB)	$0.66 \pm 0.04 \; (0.55/0.77)$
TobC ^C DD (T2252–L2275)	VirA ^C DD (D6938–T6961) (4HB)	$0.62\pm0.04\;(0.49/0.71)$
(51160)	MlnE ^N DD (Q7–K30) (4HB)	$0.57 \pm 0.03 \; (0.53/0.63)$
	VirA ^C DD (D6938–T6961) (4HB)	$0.49 \pm 0.01 \; (0.47/0.52)$
$MInE ^{N}DD (Q7-K30) (4HB)$	VirFG ^N DD (D6938–T6961) (4HB)	$0.51 \pm 0.02 \; (0.47/0.54)$
VirA ^c DD (D6938–T6961) (<i>4HB</i>)	VirFG ^N DD (D6938–T6961) (4HB)	0.64 ± 0.04 (0.54/0.72)
	Bam_5924 ^N DD (L15-Q37) (2-related)	$0.47\pm0.03\;(0.39/0.59)$
	CurH ^N DD [§] (K15–K37) (2)	$0.51\pm0.02\;(0.47/0.55)$
PaxB $^{-1}DD(N3-K25)(*)$	CurH ^N DD [¶] (K15–K37) (2)	$0.48 \pm 0.03 \; (0.42/0.51)$
	CurH ^N DD overall (2)	$0.49 \pm 0.03 \; (0.42/0.55)$
	CurL ^N DD (K9–K29) 4MYZ (2)	$0.40 \pm 0.03 \; (0.33/0.49)$
PaxC $^{\text{NDD}}$ (E5–Q25) (3HBa)	CurL ^N DD (K9–K29) 4MZ0 (2)	$0.45\pm0.03\;(0.39/0.49)$
	CurG ^C DD [§] (L1554–L1578) (2)	0.51 ± 0.03 (0.44/0.56)
	CurG ^C DD [¶] (L1554–L1578) (2)	$0.39 \pm 0.02 \; (0.35/0.43)$
PaxB ^C DD (A3296–Q3320) (2 HPa)	CurG ^C DD overall (2)	$0.45\pm0.07~(0.35/0.56)$
(SIIDa)	Bam_5925 ^C DD (P2617–F2641) (2-related)	$0.39 \pm 0.03 \; (0.31/0.47)$
	PaxA T1- ^C DD (E1060–E1084) (*)	$0.41 \pm 0.04 \; (0.33/0.53)$
	CurG ^C DD [§] (L1554–L1578) (2)	$0.39 \pm 0.02 \; (0.36/0.42)$
PaxA T1- ^C DD	CurG ^C DD [¶] (L1554–L1578) (2)	$0.38 \pm 0.03 \; (0.34/0.42)$
(E1060-E1084) (*)	CurG ^C DD overall (2)	$0.39 \pm 0.02 \; (0.34/0.42)$
	Bam_5925 ^c DD (P2617–F2641) (2-related)	$0.31 \pm 0.03 \; (0.25/0.43)$
	CurK ^C DD (D2208–Q2223) (2)	$0.58 \pm 0.03 \; (0.53/0.63)$
	CurG ^C DD [§] (L1554–L1578) (2)	$0.67\pm0.00\;(0.67/0.67)$
	CurG ^C DD [¶] (L1554–L1578) (2)	$0.54 \pm 0.07 \; (0.50/0.59)$
PikAIII ^c DD (S1543–L1557)	CurG ^C DD overall (2)	$0.61 \pm 0.08 \; (0.50/0.67)$
(10)	Bam_5925 ^c DD (P2617–F2641) (2-related)	$0.49 \pm 0.03 \; (0.43/0.58)$
	PaxB ^c DD (D3296–Q3320) (<i>3HBa</i>)	$0.49 \pm 0.03 \; (0.42/0.54)$
	PaxA T1- ^C DD (E1060–E1084) (*)	$0.46 \pm 0.03 \; (0.40/0.54)$
Di-domain ^C DD/ ^N DD 1	Di-domain ^C DD/ ^N DD 2	TM score (min/max)
	$CurG ^{C}DD/CurH ^{N}DD $	$0.50\pm 0.01\;(0.48/0.52)$
PaxB ^c DD/PaxC ^N DD (O3288–O3321/M1–Y33)	(N1551-N1583/M1-E44) (2) CurG ^c DD/CurH ^N DD [¶] (N1551-N1583/M1-E44) (2)	0.51 ± 0.04 (0.37/0.54)
(3 <i>HBa</i>)	CurG ^C DD/CurH ^N DD overall (2)	$0.51\pm0.04\;(0.37/0.54)$
	Bam_5925 ^c DD/Bam_5924 ^N DD	$0.49\pm0.01\;(0.45/0.54)$
N DD N DD (1) ^a	(A2616–E2644/M1–G41) (2-related) ^N DD/ ^N DD (2)	TM score (min/max)
CurL (S14-E34)/CurL (PDR)	Curl (\$14-E34)/Curl (PDR ID: 4MYZ)	
ID: 4MZ0) (S13–T35) (2)	(S14–T35) (2)	0.70

Table S6 Summary of TM scores calculated between proteins or complexes in this study

^C DD/ ^N DD complex 1	^C DD/ ^N DD complex 2	TM score (min/max)
	CurG ^c DD/Cur ^N DD H (E1561–N1583/Q20–H43) (2)	0.68
	PikAIII ^c DD/ PikAIV ^N DD (S1543–G1558/S3–R33) (<i>1b</i>)	0.58
CurK ^C DD/CurL ^N DD (D2208–A2227/S14–E34) (2)	DEBS 2 ^C DD/ DEBS 3 ^N DD (A3548–G3563/M7–A37) (<i>1a</i>)	$0.56 \pm 0.02 \; (0.54/0.59)$
	Bam_5920 ^c DD 5919 ^N DD (D2956–G2973/M1–R30) (1-related)	0.66 ± 0.01 (0.64/0.68)
	Bam_5925 ^c DD 5924 ^N DD (E2624–E2644/R17–G41) (2-related)	0.42 ± 0.01 (0.40/0.45)
	DEBS 2 ^C DD/ DEBS 3 ^N DD (A3548–G3563/M7–A37) (<i>1a</i>)	0.60 ± 0.01 (0.61/0.64)
PikAIII ^C DD/ PikAIV ^N DD	CurG ^c DD/Cur ^N DD H (E1561–N1583/Q20–H43) (2)	0.67
(S1543–G1558/S3–R33) (<i>1b</i>)	Bam_5920 ^c DD 5919 ^N DD (D2956–G2973/M1–R30) (<i>1-related</i>)	$0.74 \pm 0.02 \; (0.70/0.77)$
	Bam_5925 ^c DD 5924 ^N DD (E2624–E2644/R17–G41) (2-related)	0.48 ± 0.01 (0.46/0.50)
	CurG ^c DD/Cur ^N DD H (E1561–N1583/Q20–H43) (2)	0.62 ± 0.01 (0.61/0.64)
DEBS 2 °DD/ DEBS 3 *DD (A3548–G3563/M7–A37) (1a)	Bam_5920 ^c DD 5919 ^N DD (D2956–G2973/M1–R30) (<i>1-related</i>)	0.65 ± 0.02 (0.59/0.69)
	Bam_5925 ^c DD 5924 ^N DD (E2624–E2644/R17–G41) (2-related)	0.39 ± 0.02 (0.34/0.43)
CurG ^c DD/Cur ^N DD H	Bam_5920 ^c DD 5919 ^N DD (D2956–G2973/M1–R30) (<i>1-related</i>)	0.72 ± 0.01 (0.70/0.73)
(E1561–N1583/Q20–H43) (2)	Bam_5925 ^c DD 5924 ^N DD (E2624–E2644/R17–G41) (<i>2-related</i>)	0.48 ± 0.01 (0.46/0.50)
Bam_5920 ^c DD 5919 ^N DD (D2956–G2973/M1–R30) (<i>1-</i> <i>related</i>)	Bam_5925 ^C DD 5924 ^N DD (E2624–E2644/R17–G41) (<i>2-related</i>)	0.45 ± 0.01 (0.42/0.48)

^aThe 'type' designations refer to the initial classification of the DDs based on their structures within the docked complexes. The symbols [§] and [¶] refer to distinct conformers observed in the crystal structures. *: In this case, the individual DDs resemble type 2(-related) domains, but the overall complex has not yet been classified.

Supplementary References

- 1 D. W. A. Buchan and D. T. Jones, Nucleic Acids Res., 2019, 47, W402–W407.
- 2 G. Erdős, M. Pajkos and Z. Dosztányi, Nucleic Acids Res., 2021, 49, W297-W303.
- 3 J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis, *Nature*, 2021, 596, 583–589.
- 4 J. Dorival, T. Annaval, F. Risser, S. Collin, P. Roblin, C. Jacob, A. Gruez, B. Chagot and K. J. Weissman, J. Am. Chem. Soc., 2016, 138, 12, 4155–416.
- 5 J. Zeng, D. T. Wagner, Z. Zhang, L. Moretto, J. D. Addison and A. T. Keatinge-Clay, ACS Chem. Biol., 2016, 11, 2466–2474.
- 6 D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang and R. J. Woods, J. Comput. Chem., 2005, 26, 1668–1688.
- 7 G. T. Montelione, M. Nilges, A. Bax, P. Güntert, T. Herrmann, J. S. Richardson, C. D. Schwieters, W. F. Vranken, G. W. Vuister, D. S. Wishart, H. M. Berman, G. J. Kleywegt and J. L. Markley, *Structure*, 2013, 21, 1563–1570.
- 8 R. A. Laskowski, J. A. Rullmannn, M. W. MacArthur, R. Kaptein and J. M. Thornton, *J. Biomol. NMR*, 1996, 8, 477–86.
- 9 V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson and D. C. Richardson, *Acta Crystallogr. Biol. Crystallogr.*, 2010, 66, 12–21.