Supplementary Information

Biochemical investigations using mass spectrometry to monitor JMJD6-catalysed hydroxylation of multi-lysine containing bromodomain-derived substrates

Thomas P. Corner^{1,+,#}, Eidarus Salah^{1,+}, Anthony Tumber^{1,+}, Lennart Brewitz^{1,*}, and Christopher J. Schofield^{1,*}

¹Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom.

*Email: lennart.brewitz@chem.ox.ac.uk, christopher.schofield@chem.ox.ac.uk

⁺These authors contributed equally to this work.

[#]Present Address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States of America.

Table of contents

1.	Abbreviations	2 - 3
2.	Supplementary figures	4 - 19
3.	References	20 - 21

1. Abbreviations

20G	2-oxoglutarate
AR	androgen receptor
AR-V7	androgen receptor slice variant 7
AspH	aspartate/asparagine β -hydroxylase
BBOX	γ-butyobetaine hydroxylase
BID	basic residue enriched interaction domain
BRD	bromodomain-containing protein
CP4H	collagen prolyl 4-hydroxylase
CROP	cisplatin resistance-associated overexpressed protein
CTAD	C-terminal activation domain
DHX9	DExH-box helicase 9
DKC1	dyskerin pseudouridine synthase 1
DSBH	double stranded β-helix
EGFD	epidermal growth factor-like domain
ERα	estrogen receptor-α
FECH	ferrochelatase
FIH	factor inducible hypoxia inducible factor-a
FLT1	vascular endothelial growth factor receptor 1
GBB	γ-butyobetaine
H3/4	histone 3/4
HIF	hypoxia-inducible factor
HSP70	heat shock protein 70
JMJD6	Jumonji-C domain-containing protein 6
KDM	histone N^{ε} -methyl lysine demethylase
$K_{ m m}^{ m app}$	apparent Michaelis constant
$k_{\rm cat}^{\rm app}$	turnover number
LAA	L-ascorbic acid
LC-MS	liquid chromatography-mass spectrometry
LUC7L2	LUC7-like 2
MALDI-MS	matrix-assisted laser desorption/ionization mass spectrometry
MINA53	MYC-induced nuclear antigen
mRNA	messenger ribonucleic acid

NKAP	NF-κB-activating protein
NMR	nuclear magnetic resonance
NOG	<i>N</i> -oxalylglycine
NO66	nucleolar protein 66
РНҮН	phytanoyl-CoA dioxygenase
RBM39	RNA-binding protein 39
RPL8	ribosomal protein L8
RPL27A	ribosomal protein L27A
RPS6	ribosomal protein S6
O_2	dioxygen
PDB	protein data bank
PHD	prolyl hydroxylase domain-containing protein
pVHL	von Hippel-Lindau protein
SRSF11	serine and arginine rich splicing factor 11
SPE-MS	solid-phase extraction coupled to mass spectrometry
TET	ten-eleven translocation
TRAF6	tumor necrosis factor receptor associated factor 6
U2AF65	splicing factor U2 auxiliary factor 65 kDa subunit
U2SURP	U2 SnRNP associated SURP domain containing
USP42	ubiquitin-specific peptidase 42
$v_{ m max}^{ m app}$	apparent maximum velocities

2. Supplementary figures

Supplementary Figure S1. Recombinant human JMJD6. Recombinant human JMJD6 (fulllength with an N-terminal His₆-tag) was >95% pure as analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with Coomassie staining and electrospray ionization mass spectrometry (ESI-MS).

(a) 10-12% SDS-PAGE analysis of purified His₆-JMJD6 after Ni(II)-affinity chromatography (HisTrap column); (b) 10-12% SDS-PAGE analysis of His₆-JMJD6 after subsequent size-exclusion chromatography (Superdex 75); (c) Deconvoluted mass spectrum of purified His₆-JMJD6 shows potential evidence for JMJD6 self-hydroxylation, as reported;¹ calculated mass of His₆-JMJD6 = 49014.73 Da, observed mass: 49030.24 Da (*i.e.*, mass difference: ~ +16 Da).

Supplementary Figure S2. Ion counts of BRD-derived peptides measured during JMJD6catalysed hydroxylation. The sum of the MS ion counts of the substrate peptide and all hydroxylated product peptides (black line) remains approximately constant throughout the JMJD6-catalyzed reactions of: (a) BRD2₅₂₀₋₅₅₉, (b) BRD3₄₆₃₋₅₀₂ and (c) BRD4₅₁₁₋₅₅₀. The results indicate that the SPE-MS assays are sufficiently robust to enable quantification of the extent of the JMJD6-catalysed BRD2₅₂₀₋₅₅₉, BRD3₄₆₃₋₅₀₂ and BRD4₅₁₁₋₅₅₀ hydroxylation. Hydroxylation reactions were performed as described in the Experimental Procedures section using His₆-JMJD6 (0.05 μ M), 2OG (200 μ M), (NH₄)₂Fe(SO₄)₂·6H₂O (FAS; 2 μ M), BRD substrate (2 μ M) and *L*-ascorbic acid (LAA; 100 μ M) in Tris buffer (50 mM, pH 7.5).

Supplementary Figure S3. Determination of the JMJD6 kinetic parameters for 2OG (continues on the following page). SPE-MS was used to determine the extent of JMJD6catalysed mono- and di-hydroxylation of the BRD4₅₁₁₋₅₅₀ fragment peptide for the specified 2OG concentrations. Initial rates of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀ were used to determine the maximum velocity (v_{max}^{app}) and Michaelis constant (K_m^{app}) of JMJD6 for 2OG. Measurement times were normalized to the first sample injection analysed after the addition of the JMJD6 enzyme mixture to the substrate mixture (containing 2OG, FAS, LAA, and BRD4₅₁₁₋₅₅₀), by which time low levels of BRD4₅₁₁₋₅₅₀ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean ± standard deviation, SD). Conditions: His₆-JMJD6 (50 nM), 2OG (as specified), FAS (2 μ M), BRD4₅₁₁₋₅₅₀ (2 μ M) and LAA (100 μ M) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD4₅₁₁₋₅₅₀ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified 2OG concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀; (c) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for 2OG. The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for 2OG are $3.5 \pm 0.1 \cdot 10^{-3} \,\mu\text{M} \cdot \text{s}^{-1}$ and $23.3 \pm 2.5 \,\mu\text{M}$, respectively, as determined by non-linear regression; (d-l) time course of the JMJD6-catalysed hydroxylation of BRD4₅₁₁₋₅₅₀ showing the relative abundance of the BRD4₅₁₁₋₅₅₀ substrate (BRD4₅₁₁₋₅₅₀; orange circles), mono-hydroxylated BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀); orange circles), mono-hydroxylated BRD4₅₁₁₋₅₅₀ + 2[O]; purple triangles), in the presence of varied 2OG concentrations: (d) 400 μ M; (e) 200 μ M; (f) 100 μ M; (g) 50 μ M; (h) 25 μ M; (j) 12.5 μ M; (j) 6.25 μ M; (k) 3.13 μ M; (l) 0 μ M. No evidence for triple (or higher order) BRD4₅₁₁₋₅₅₀ hydroxylation was observed under the employed reaction conditions.

Supplementary Figure S4. Determination of the JMJD6 kinetic parameters for Fe(II) (continues on the following page). SPE-MS was used to determine the extent of JMJD6-catalysed mono- and di-hydroxylation of the BRD4₅₁₁₋₅₅₀ fragment peptide for the specified Fe(II) concentrations. Initial rates of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀ were used to determine the maximum velocity (v_{max}^{app}) and apparent Michaelis constant (K_m^{app}) of JMJD6 for Fe(II). Measurement times were normalized to the first sample injection analysed after the addition of the JMJD6 enzyme mixture into the substrate mixture, by which time low levels of BRD4₅₁₁₋₅₅₀ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean ± SD). Conditions: His₆-JMJD6 (50 nM), 2OG (200 μ M), FAS (as specified), BRD4₅₁₁₋₅₅₀ (2 μ M) and LAA (100 μ M) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD4₅₁₁₋₅₅₀ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified Fe(II) concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀; (c) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for Fe(II). The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for Fe(II) are $3.6 \pm 0.1 \cdot 10^{-3} \,\mu\text{M} \cdot \text{s}^{-1}$ and $0.19 \pm 0.02 \,\mu\text{M}$, respectively, as determined by non-linear regression; (d-k) time course of the JMJD6-catalysed hydroxylation of BRD4₅₁₁₋₅₅₀ showing the relative abundance of the BRD4₅₁₁₋₅₅₀ substrate (BRD4₅₁₁₋₅₅₀; orange circles), mono-hydroxylated BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀); purple triangles), in the presence of varied Fe(II) concentrations: (d) 4 μ M; (e) 2 μ M; (f) 1 μ M; (g) 0.5 μ M; (h) 0.25 μ M; (i) 0.125 μ M; (j) 0.063 μ M; (k) 0 μ M. No evidence for triple (or higher order) BRD4₅₁₁₋₅₅₀ hydroxylation was observed under the employed reaction conditions.

Supplementary Figure S5. Effect of LAA on the JMJD6-catalysed hydroxylation of BRD4₅₁₁₋₅₅₀ (continues on the following page). SPE-MS was used to determine the extent of JMJD6-catalysed mono- and di-hydroxylation of the BRD4₅₁₁₋₅₅₀ fragment peptide for the specified concentrations of L-ascorbic acid (LAA). Measurement times were normalized to the first sample injection analysed after the addition of the JMJD6 enzyme mixture to the substrate mixture, by which time low levels of BRD4₅₁₁₋₅₅₀ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean \pm SD). Conditions: His₆-JMJD6 (50 nM), 2OG (200 μ M), FAS (2 μ M), BRD4₅₁₁₋₅₅₀ (2 μ M) and LAA (as specified) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD4₅₁₁₋₅₅₀ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified LAA concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀; (c) effect of LAA concentration on the initial reaction velocity of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀; (c) effect of LAA concentration on the initial reaction velocity of the JMJD6-catalysed hydroxylation of BRD4₅₁₁₋₅₅₀; showing the relative abundance of the BRD4₅₁₁₋₅₅₀ substrate (BRD4₅₁₁₋₅₅₀; orange circles), mono-hydroxylated BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ + [O]; green squares) and di-hydroxylated BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ + 2[O]; purple triangles), in the presence of varied LAA concentrations: (d) 100 μ M; (e) 50 μ M; (f) 25 μ M; (g) 12.5 μ M; (h) 6.25 μ M; (i) 3.13 μ M; (j) 1.56 μ M; (k) 0.78 μ M; (l) 0.39 μ M; (m) 0 μ M. No evidence for triple (or higher order) BRD4₅₁₁₋₅₅₀ hydroxylation was observed under the employed reaction conditions.

Supplementary Figure S6. Determination of the JMJD6 kinetic parameters for BRD4₅₁₁s50 (continues on the following page). SPE-MS was used to determine the extent of JMJD6catalysed mono- and di-hydroxylation of the BRD4₅₁₁₋₅₅₀ fragment peptide for the specified BRD4₅₁₁₋₅₅₀ concentrations. Initial rates of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀ were used to determine the maximum velocity (v_{max}^{app}) and Michaelis constant (K_m^{app}) of JMJD6 for BRD4₅₁₁₋₅₅₀. Measurement times were normalized to the first sample injection analysed after the addition of the JMJD6 enzyme mixture to the substrate mixture, by which time low levels of BRD4₅₁₁₋₅₅₀ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean ± SD). Conditions: His₆-JMJD6 (50 nM), 2OG (200 µM), FAS (2 µM), BRD4₅₁₁₋₅₅₀ (as specified) and LAA (100 µM) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD4₅₁₁₋₅₅₀ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified BRD4₅₁₁₋₅₅₀ concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀; (c) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for BRD4₅₁₁₋₅₅₀. The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for BRD4₅₁₁₋₅₅₀ are $5.8 \pm 1.2 \cdot 10^{-3} \, \mu M \cdot s^{-1}$ and $0.62 \pm 0.26 \, \mu M$, respectively, as determined by non-linear regression; (d-l) time course of the JMJD6-catalysed hydroxylation of BRD4₅₁₁₋₅₅₀ showing the relative abundance of the BRD4₅₁₁₋₅₅₀ substrate (BRD4₅₁₁₋₅₅₀; orange circles), mono-hydroxylated BRD4₅₁₁₋₅₅₀ (BRD4₅₁₁₋₅₅₀ + [O]; green squares) and di-hydroxylated BRD4₅₁₁₋₅₅₀ concentrations: (d) 10 μ M; (e) 8 μ M; (f) 6 μ M; (g) 4 μ M; (h) 2 μ M; (i) 1 μ M; (j) 0.8 μ M; (k) 0.6 μ M; (l) 0.4 μ M. No evidence for triple (or higher order) BRD4₅₁₁₋₅₅₀ hydroxylation was observed under the employed reaction conditions.

Supplementary Figure S7. Determination of the JMJD6 kinetic parameters for BRD2₅₂₀-559 (continues on the following page). SPE-MS was used to determine the extent of JMJD6catalysed mono- and di-hydroxylation of the BRD2₅₂₀₋₅₅₉ fragment peptide for the specified BRD2₅₂₀₋₅₅₉ concentrations. Initial rates of the JMJD6-catalysed mono-hydroxylation of BRD2₅₂₀₋₅₅₉ were used to determine the maximum velocity (v_{max}^{app}) and Michaelis constant (K_m^{app}) of JMJD6 for BRD2₅₂₀₋₅₅₉. Measurement times were normalized to the first sample injection analysed after addition of the JMJD6 enzyme mixture to the substrate mixture, by which time low levels of BRD2₅₂₀₋₅₅₉ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean ± SD). Conditions: His₆-JMJD6 (50 nM), 2OG (200 μ M), FAS (2 μ M), BRD2₅₂₀₋₅₅₉ (as specified) and LAA (100 μ M) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD2₅₂₀₋₅₅₉ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified BRD2₅₂₀₋₅₅₉ concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD2₅₂₀₋₅₅₉; (c) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for BRD2₅₂₀₋₅₅₉. The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for BRD2₅₂₀₋₅₅₉ are $1.2 \pm 0.2 \cdot 10^{-2} \mu M \cdot s^{-1}$ and $0.89 \pm 0.32 \mu M$, respectively, as determined by non-linear regression; (d-m) time course of the JMJD6-catalysed hydroxylation of BRD2₅₂₀₋₅₅₉ showing the relative abundance of the BRD2₅₂₀₋₅₅₉ substrate (BRD2₅₂₀₋₅₅₉; orange circles), mono-hydroxylated BRD2₅₂₀₋₅₅₉ (BRD2₅₂₀₋₅₅₉ + [O]; green squares), di-hydroxylated BRD2₅₂₀₋₅₅₉ (BRD2₅₂₀₋₅₅₉ + 3[O]; light blue diamonds) and tetrahydroxylated BRD2₅₂₀₋₅₅₉ (BRD2₅₂₀₋₅₅₉ + 4[O]; brown inverse triangles) in the presence of varied BRD2₅₂₀₋₅₅₉ concentrations: (d) 10 μ M; (e) 8 μ M; (f) 6 μ M; (g) 4 μ M; (h) 2 μ M; (i) 1 μ M; (j) 0.8 μ M; (k) 0.6 μ M; (l) 0.4 μ M.

Supplementary Figure S8. Determination of the JMJD6 kinetic parameters for BRD3₄₆₃₋₅₀₂ (continues on the following page). SPE-MS was used to determine the extent of JMJD6-catalysed mono- and di-hydroxylation of the BRD3₄₆₃₋₅₀₂ fragment peptide for the specified BRD3₄₆₃₋₅₀₂ concentrations. Initial rates of the JMJD6-catalysed mono-hydroxylation of BRD3₄₆₃₋₅₀₂ were used to determine the maximum velocity (v_{max}^{app}) and Michaelis constant (K_m^{app}) of JMJD6 for BRD3₄₆₃₋₅₀₂. Measurement times were normalized to the first sample injection analysed after the addition of the JMJD6 enzyme mixture to the substrate mixture, by which time low levels of BRD3₄₆₃₋₅₀₂ mono-hydroxylation were manifest. Data are the mean of three independent runs (n = 3; mean ± SD). Conditions: His₆-JMJD6 (50 nM), 2OG (200 μ M), FAS (2 μ M), BRD3₄₆₃₋₅₀₂ (as specified) and LAA (100 μ M) in Tris buffer (50 mM, pH 7.5).

(a) Abundance of the mono-hydroxylated BRD3₄₆₃₋₅₀₂ peptide, following the addition of 50 nM JMJD6 to the substrate mixture (t = 0 min), for the specified BRD3₄₆₃₋₅₀₂ concentrations; (b) initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD3₄₆₃₋₅₀₂; (c) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for BRD3₄₆₃₋₅₀₂. The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for BRD3₄₆₃₋₅₀₂ are $5.2 \pm 1.3 \cdot 10^{-3}$ µM·s⁻¹ and 1.2 ± 0.4 µM, respectively, as determined by non-linear regression; (d-m) time course of the JMJD6-catalysed hydroxylation of BRD3₄₆₃₋₅₀₂ (BRD3₄₆₃₋₅₀₂ (BRD3₄₆₃₋₅₀₂ + [O]; green squares), di-hydroxylated BRD3₄₆₃₋₅₀₂ + 2[O]; purple triangles) and tri-hydroxylated BRD3₄₆₃₋₅₀₂ (BRD3₄₆₃₋₅₀₂ + 3[O]; light blue diamonds) in the presence of varied BRD3₄₆₃₋₅₀₂ concentrations: (d) 10 µM; (e) 8 µM; (f) 6 µM; (g) 4 µM; (h) 2 µM; (i) 1 µM; (j) 0.8 µM; (k) 0.6 µM; (l) 0.4 µM; (m) 0.2 µM.

Supplementary Figure S9. Determination of the JMJD6 kinetic parameters for O₂. SPE-MS was used to determine the extent of JMJD6-catalysed mono-hydroxylation of the BRD4₅₁₁₋₅₅₀ fragment peptide for the specified O₂ concentrations. The concentration of O₂ [%] in the reaction buffer was converted into O₂ [μ M] by standard calibration ($y_{[\mu M]} = 9.026 \cdot x_{[\%]}$).² Hydroxylation reactions used to determine the JMJD6 kinetic parameters for O₂ were performed at 37 °C and quenched after 60 or 90 s, as indicated. Data are the mean of three independent runs (n = 3; mean ± SD). Note, no evidence for di- (or higher order) hydroxylation of BRD4₅₁₁₋₅₅₀ was observed under the reaction conditions used. Conditions: His₆-JMJD6 (50 nM), 2OG (200 μ M), FAS (2 μ M), BRD4₅₁₁₋₅₅₀ (2 μ M), LAA (100 μ M) and O₂ (as specified) in Tris buffer (50 mM, pH 7.5) at 37 °C.

(a) Initial reaction velocities used for the kinetic analysis of the JMJD6-catalysed mono-hydroxylation of BRD4₅₁₁₋₅₅₀ under different partial pressures of O₂; (b) Michaelis-Menten curve used to determine the kinetic parameters of JMJD6 for O₂. The JMJD6 v_{max}^{app} and K_m^{app} values of JMJD6 for O₂ are $6.5 \pm 0.4 \cdot 10^{-3} \,\mu\text{M} \cdot \text{s}^{-1}$ and $74.3 \pm 13.4 \,\mu\text{M}$, respectively, as determined by non-linear regression.

Supplementary Figure S10. Consensus mechanism for 2OG oxygenase catalysis. (a) 2OG oxygenases catalyse substrate oxidation (here: hydroxylation) in a manner coupled to the oxidative decarboxylation of 2OG to give succinate and carbon dioxide.³⁻⁵ Note that some 2OG oxygenases catalyse the substrate uncoupled turnover of 2OG to succinate and CO₂, at least in one case leading to a stable ternary enzyme:Fe(III):2OG complex.⁶ (b) The proposed consensus mechanism for hydroxylation reactions catalysed by 2OG oxygenases.³ Note, variations on this general catalytic cycle can occur, including with respect to the nature of the 2OG binding mode and the presence of Fe-binding waters, at different stages of catalysis.^{7, 8} Mechanistic studies using isotopically labelled O₂ have revealed high levels of O from O₂ is incorporated into the alcohol products of reactions catalysed by human 2OG oxygenases.⁹⁻¹¹ By contrast, (partial) incorporation of isotopically labelled O from water into alcohol products has been observed for reactions catalysed by some bacterial and fungal dioxygenases.¹²⁻¹⁷ Note, a consistently high level of a single isotopically labelled O from O₂ into the succinate coproduct has been reported.¹⁸

3. References

- M. Mantri, C. J. Webby, N. D. Loik, R. B. Hamed, M. L. Nielsen, M. A. McDonough, J. S. O. McCullagh, A. Böttger, C. J. Schofield and A. Wolf, *MedChemComm*, 2012, 3, 80-85.
- 2. R. L. Hancock, N. Masson, K. Dunne, E. Flashman and A. Kawamura, *ACS Chem. Biol.*, 2017, **12**, 1011-1019.
- 3. S. Martinez and R. P. Hausinger, J. Biol. Chem., 2015, 290, 20702-20711.
- 4. K. S. Hewitson, N. Granatino, R. W. D. Welford, M. A. McDonough and C. J. Schofield, *Philos. Trans. R. Soc. A*, 2005, **363**, 807-828.
- 5. C. J. Schofield and R. Hausinger, *2-Oxoglutarate-Dependent Oxygenases*, The Royal Society of Chemistry, 2015.
- 6. G. Fiorini, S. A. Marshall, W. D. Figg, W. K. Myers, L. Brewitz and C. J. Schofield, *Sci. Rep.*, 2024, **14**, 26162.
- 7. M. A. McDonough, C. Loenarz, R. Chowdhury, I. J. Clifton and C. J. Schofield, *Curr. Opin. Struct. Biol.*, 2010, **20**, 659-672.
- 8. A. Brasnett, I. Pfeffer, L. Brewitz, R. Chowdhury, Y. Nakashima, A. Tumber, M. A. McDonough and C. J. Schofield, *Angew. Chem. Int. Ed.*, 2021, **60**, 14657-14663.
- 9. E. Holme, G. Lindstedt, S. Lindstedt and M. Tofft, *J. Biol. Chem.*, 1971, **246**, 3314-3319.
- 10. W. Min, T. P. Begley, J. Myllyharju and K. I. Kivirikko, *Bioorg. Chem.*, 2000, **28**, 261-265.
- L. A. McNeill, K. S. Hewitson, J. M. Gleadle, L. E. Horsfall, N. J. Oldham, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe and C. J. Schofield, *Bioorg. Med. Chem. Lett.*, 2002, **12**, 1547-1550.
- 12. J. E. Baldwin, R. M. Adlington, N. P. Crouch and I. A. C. Pereira, *Tetrahedron*, 1993, **49**, 7499-7518.
- 13. J. E. Baldwin, R. M. Adlington, N. P. Crouch, I. A. C. Pereira, R. T. Aplin and C. Robinson, J. Chem. Soc., Chem. Commun., 1993, 105-108.
- 14. B. Lindblad, G. Lindstedt and S. Lindstedt, J. Am. Chem. Soc., 1970, 92, 7446-7449.
- 15. P. J. Sabourin and L. L. Bieber, J. Biol. Chem., 1982, 257, 7468-7471.
- 16. Y. Kikuchi, Y. Suzuki and N. Tamiya, *Biochem. J.*, 1983, **213**, 507-512.
- 17. J. E. Baldwin, R. M. Adlington, N. P. Crouch and C. J. Schofield, *Tetrahedron*, 1988, 44, 643-650.

18. R. W. D. Welford, J. M. Kirkpatrick, L. A. McNeill, M. Puri, N. J. Oldham and C. J. Schofield, *FEBS Lett.*, 2005, **579**, 5170-5174.