Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Supporting Information

One-pot synthesis of azabora[6]helicence by a Schiff base forming reaction

Yuto Kage,^a Yuchuan Jiang,^a Namiki Minakuchi,^a Shigeki Mori^b and Soji Shimizu*^a

^aDepartment of Applied Chemistry, Graduate School of Engineering and Centre for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan

^bAdvanced Research Support Centre (ADRES), Ehime University, Matsuyama 790-8577, Japan

Contents:

- i. Experimental
- ii. HR-MS Spectra
- iii. NMR Spectra
- iv. Crystallographic Data
- v. Variable-Temperature (VT) ¹H NMR Spectra and Simulation
- vi. Absorption and Fluorescence Spectra of 4
- vii. Electrochemistry of 4
- viii. TDDFT Calculations
- ix. References
- x. Appendix

i. Experimental

General procedure: High-resolution mass spectrometry was performed on a JEOL LMS-HX-110 spectrometer (FAB mode with 3-nitrobenzyl alcohol (NBA) as a matrix). ¹H NMR spectra were recorded on a JEOL JNM-ECX500R spectrometer (operating at 495.132 MHz for ¹H and 465.8894 MHz for ¹⁹F) using residual solvent as an internal reference for ¹H (δ = 7.26 ppm for CDCl₃) and using trifluoroacetic acid as an external reference for ¹⁹F (δ = -76.55 ppm). Electronic absorption spectra were recorded on a JASCO V-770 spectrophotometer. Fluorescence spectra in solution were measured on an SPEX Fluorolog-3-NIR spectrometer (HORIBA) with a NIR-PMT R5509 photomultiplier tube (Hamamatsu) or an on a JASCO FR-8650 spectrometer. Fluorescence spectra in a drop-cast film and absolute fluorescence quantum yields in solution and a drop-cast film were measured on a HAMAMATSU C13534-21 calibrated integrating-sphere system with and without self-absorption correction for solution samples and film samples, respectively. Preparative separations were performed using silica gel column chromatography (KANTO Silica Gel 60 N, spherical, neutral, 63–210 µm). Thin-layer chromatography (TLC) was performed with aluminum sheet silica gel 60 F₂₅₄ (Merck). All reagents and solvents used for syntheses were of commercial reagent grade and were used without further purification except where noted. Spectroscopic grade solvents were used for spectroscopy.

Crystallographic data collection and structure refinement: Suitable crystals for X-ray diffraction analysis were obtained by a vapor diffusion method. Data collection was carried out at –173 °C on a Rigaku Saturn724 diffractometer with MoKα radiation. The structure was solved by a direct method (SHELXT)¹ and refined using a full-matrix least squares technique (SHELXL).² CCDC 2320994 and 2320995 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Electrochemical measurements: Cyclic voltammograms (CV) and differential pulse voltammograms (DPV) were recorded on a CH Instrument Model 620B (ALS) under an argon atmosphere in an *o*-dichlorobenzene (*o*-DCB) solution with 0.1 M tetra-*n*-butylammonium perchlorate (TBAP) as a supporting electrolyte. Measurements were made with a glassy carbon working electrode, a Ag/AgCl reference electrode and a Pt wire counter electrode. The concentration of the solution was fixed at 0.5 mM, and the scan rates were set to 100 mV s⁻¹ for CV measurements. The pulse amplitude and width were set to 0.05 V and 0.2 s for DPV measurements. A ferrocenium/ferrocene (Fc⁺/Fc) couple was used as an internal standard.

Theoretical calculation details: The Gaussian 16 software package³ was used to perform DFT and TDDFT calculations using the B3LYP⁴ with 6-311G(2d,p) basis set.⁵

Synthetic procedure

Scheme S1. Synthesis of azabora[6]helicenes **3** and **4**. Reaction conditions (i): $TiCl_4$, NEt_3 , toluene, reflux; (ii) $BF_3 \cdot OEt_2$ for **3** and (i) $TiCl_4$, NEt_3 , *o*-dichlorobenzene, reflux; (ii) $BPh_3 \cdot PPh_3$ and NEt_3 for **4**.

3: Benzo[*cd*]indol-2-(1H)-one **1** (504 mg, 2.98 mmol, 2.8 eq) and 2,6-diaminopyridine **2** (115 mg, 1.05 mmol) were dissolved in dry toluene (93 mL). The mixture was stirred at 25 °C for 10 min under a nitrogen atmosphere before adding titanium tetrachloride (144 μ L, 1.31 mmol, 1.3 eq) and triethylamine (456 μ L, 3.29 mmol). The reaction mixture was then refluxed overnight. Boron trifluoride etherate (768 μ L, 6.22 mmol, 5.9 eq) was added, and the mixture was refluxed for 3 h. The resulting mixture was directly charged to silica gel chromatography. The roughly purified mixture was further purified by silica gel column chromatography (eluent: EtOAc/hexane = 1:1 (v/v)) to provide **3** as a black solid (84.0 mg, 191 μ mol, 18%).

¹H NMR (495 MHz, CDCl₃, 295 K): δ8.42–8.38 (m, 2H), 8.18 (d, *J* = 7.9 Hz, 1H), 8.12 (d, *J* = 7.9 Hz, 1H), 8.01 (t, *J* = 7.9 Hz, 1H), 7.88–7.82 (m, 2H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.64–7.60 (m, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.39 (dd, *J*₁ $= I_2 = 7.7$ Hz, 1H), 7.35 (d, I = 7.9 Hz, 1H), 6.87 (d, I = 6.8 Hz, 1H), 6.41 (d, I = 7.4 Hz, 1H). ¹H NMR (495 MHz, tetrachloroethane-d₂, 295 K): δ 8.71 (s, 1H), 8.52 (d, J = 6.8 Hz, 1H), 8.26 (m, 2H), 8.12 (t, J = 7.9 Hz, 1H), 7.93 (m, 2H), 7.83 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 7.9 Hz, 2H), 7.68 (dd, J₁ = J₂ = 7.7 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.47 (dd, J₁ = J₂ = 7.9 Hz, 1H), 6.97 (d, J = 6.8 Hz, 1H), 6.56 (d, J = 7.4 Hz, 1H). ¹⁹F NMR (465 MHz, CDCl₃, 295 K): δ-129.710 (q, $J_{B-F} = 51.2 \text{ Hz}$). UV/Vis/NIR (CHCl₃): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 358 (10400), 415 (27800), 437 (20300), 513 (18200), 548 (19000); HR-MS (FAB): [*M*]⁺ Calcd for C₂₇H₁₅BFN₅: 439.1409; Found: 439.1404 (error: -1.1 ppm). 4: Benzo[cd]indol-2-(1H)-one 1 (253 mg, 1.50 mmol, 2.8 eq) and 2,6-diaminopyridine 2 (54.5 mg, 0.50 mmol) were dissolved in dry o-dichlorobenzene (25 mL). The mixture was stirred at 25 °C for 10 min under a nitrogen atmosphere before adding titanium tetrachloride (43.8 µL, 0.40 mmol, 2.0 eq) and triethylamine (200 µL, 1.43 mmol). The reaction mixture was then refluxed for 2 h. Triphenylborane-triphenylphosphine complex (131 mg, 0.26 mmol, 1.3 eq) and triethylamine (200 μ L, 1.43 mmol) were added, and the mixture was refluxed for 3 h. The resulting mixture was directly charged to silica gel chromatography. The roughly purified mixture was further purified by silica gel column chromatography (eluent: EtOAc/hexane = 1:1 (v/v)) to provide 4 as a red solid (31.8 mg, 64 µmol, 13%).

¹H NMR (495 MHz, CDCl₃, 295 K): δ 8.38 (m, 2H), 8.15 (d, *J* = 7.9 Hz, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.91 (t, *J* = 7.9 Hz, 1H), 7.84 (m, 2H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.38–7.32 (m, 3H), 7.19 (d, *J* = 7.4 Hz, 1H), 6.95 (t, *J* = 7.1 Hz, 1H), 6.89 (dd, *J*₁ = 7.1 Hz, *J*₂ = 6.8 Hz, 2H), 6.77 (d, *J* = 6.8 Hz, 2H), 6.42 (d, *J* = 6.8 Hz, 1H), 6.35 (d, *J* = 7.4 Hz, 1H). UV/Vis/NIR (CHCl₃): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 360 (7700), 417 (22000), 442 (28000), 518 (14800), 554 (16000); HR-MS (FAB): [*M*]⁺ Calcd for C₃₃H₂₁BN₅: 498.1896; Found: 498.1892 (error: -0.8 ppm).

ii. HR-MS Spectra

Fig. S1. HR-FAB-MS spectrum of 3 (top) and the isotope pattern (bottom).

Fig. S2. HR-FAB-MS spectrum of 4 (top) and the isotope pattern (bottom).

iii. NMR Spectra

Fig. S3. ¹H NMR spectrum of 3 in CDCl₃. * indicates a residual solvent signal.

Fig. S4. ¹H-¹H COSY spectrum of 3 in CDCl₃.

Fig. S6. ¹H NMR spectrum of 4 in CDCl₃. * indicates residual solvent signals.

Fig. S7. ¹H-¹H COSY spectrum of 4 in CDCl₃.

iv. Crystallographic Data

 Table S1. Crystallographic data.

5 0 1		
Compound	3	4
Empirical formula	$C_{27}H_{15}BF_4N_5$	$C_{34}H_{22}BCl_2N_5$
Formula weight	439.25	582.27
Temperature (K)	100	100
Wavelength (Å)	0.71073 (MoKα)	0.71073 (MoKα)
Crystal system	triclinic	triclinic
Space group	P1 (no. 2)	P1 (no. 2)
Unit cell dimensions		
a (Å)	8.0536(5)	9.3419(4)
<i>b</i> (Å)	8.9238(5)	10.0645(5)
<i>c</i> (Å)	15.0934(9)	14.7904(6)
α (°)	79.306(5)	91.141(4)
eta (°)	85.035(5)	105.751(4)
γ(°)	65.599(5)	91.019(4)
Volume (Å ³)	970.63(11)	1338.11(11)
Ζ	2	2
Density (calcd.) (g/cm ³)	1.503	1.445
μ (mm ⁻¹)	0.098	0.279
F(000)	452	600
Crystal size (mm ³)	$0.1 \times 0.06 \times 0.01$	$0.24 \times 0.18 \times 0.02$
$\theta(^{\circ})$ for data collection	2.541 to 27.99	2.024 to 28.28
Index ranges	$-10 \le h \le 10$	$-12 \le h \le 12$
	$-11 \le k \le 11$	$-13 \le k \le 13$
	$-19 \le l \le 19$	$-19 \le l \le 19$
Reflection collected	19008	25738
Unique reflections	4687 ($R_{\rm int} = 0.0646$)	6621 ($R_{int} = 0.0624$)
Completeness	1.000	0.994
Absorption correction	multi-scan	multi-scan
Max. and min. transmission	0.779, 1.000	0.770, 1.000
Data/restrains/parameters	4687/0/308	6621/0/379
Goodness-of-fit on F^2	1.039	1.043
Final <i>R</i> indices $[I>2\sigma(I)]$	0.0533	0.0562
wR2 indices (all data)	0.1286	0.1447
Large diff. peak and hole	0.38, -0.24	0.38, -0.44
CCDC number	2320994	2320995

Fig. S8. X-ray single crystal structures of **4**: (a) *P*-enantiomer and (b) packing diagram in which the *P*- and *M*-enantiomers are highlighted in blue and orange colors, respectively. The thermal ellipsoids are scaled to the 50% probability level.

v. Variable-Temperature (VT) ¹H NMR Spectra and Simulation

Fig. S9. VT ¹H NMR spectra of **3** in 1,1,2,2-tetrachloroethane-*d*₂.

Line-shape analysis of the proton signals (A, A', B, B', C and C') designated in Fig. S9 was performed using iNMR (ver. 6.4.3).

Fig. S11. Observed (pink line) and simulated (blue line) ¹H NMR spectra of **3** at 258–288 K in 1,1,2,2-tetrachloroethane- d_2 . Inversion rate constants used for the simulation are tabulated in Table S2.

Fig. S12. Observed (pink line) and simulated (blue line) ¹H NMR spectra of **3** at 298–328 K in 1,1,2,2-tetrachloroethane- d_2 . Inversion rate constants used for the simulation are tabulated in Table S2.

Fig. S13. Observed (pink line) and simulated (blue line) ¹H NMR spectra of **3** at 338–368 K in 1,1,2,2-tetrachloroethane- d_2 . Inversion rate constants used for the simulation are tabulated in Table S2.

Fig. S14. Observed (pink line) and simulated (blue line) ¹H NMR spectra of **3** at 378–408 K in 1,1,2,2-tetrachloroethane- d_2 . Inversion rate constants used for the simulation are tabulated in Table S2.

T [K]	$k [s^{-1}]$	T [K]	k [s ⁻¹]
258	0.2	338	120
268	1.5	348	400
278	2.5	358	600
288	7.0	368	900
298	9.5	378	1200
308	14.5	388	1700
318	40	398	3000
328	60	408	4500

Table S2. Simulated inversion rate constants (*k*) of **3** at various temperatures.

Fig. S15. Arrhenius (top) and Eyring (bottom) plots for **3**. **Table S3.** Summary of the activation parameters for **3**.

E _a [kcal mol ⁻¹]	13.30±0.35
ΔH^{\ddagger} [kcal mol ⁻¹]	12.66±0.35
ΔS^{\ddagger} [cal mol ⁻¹ K ⁻¹]	$-9.98{\pm}1.1$
$\Delta G^{\ddagger}_{298}$ [kcal mol ⁻¹]	15.70±0.30

vi. Absorption and Fluorescence Spectra of 4

Fig. S16. UV/vis (solid line) and fluorescence (dashed line) spectra of **4** in chloroform and fluorescence spectrum of **4** in a drop-cast film (dotted line).

vii. Electrochemistry of 4

Fig. S17. Cyclic and differential pulse voltammograms of **4** (0.5 mM) in *o*-DCB containing 0.1 M TBAP (scan rare: 100 mV s⁻¹ for CV; pulse amplitude: 0.05 V, pulse width: 0.2 s for DPV).

viii. TDDFT Calculations

Table S4. Selected transition energies, oscillator strength and major contributions of **3** calculated by the TDDFT method (B3LYP/6-311G(2d,p). Main contributions are highlighted in bold.

No.	wavelength [nm]	f ^[a]	Major contributions (weight%) ^[b]
1	515	0.254	HOMO→LUMO (99%)
2	451	0.067	H–1→LUMO (21%), HOMO→L+1 (77%)
3	401	0.287	H–1→LUMO (72%), HOMO→L+1 (18%)
4	397	0.031	H-1→L+1 (94%)
5	331	0.021	H–4→LUMO (10%), H–3→L+1 (10%), H–2→LUMO (68%)
6	325	0.052	H–3→LUMO (55%), HOMO→L+3 (22%)
7	319	0.012	HOMO→L+2 (83%)
8	309	0.013	H–4→LUMO (23%), H–3→L+1 (15%), H–2→LUMO (21%), HOMO→L+4 (14%)
9	305	0.008	H–7→LUMO (64%), H–6→LUMO (22%)
10	301	0.049	H–3→LUMO (19%), H–2→L+1 (62%)

[a] Oscillator strength. [b] H and L denote the HOMO and LUMO, respectively.

Table S5. Selected transition energies, oscillator strength and major contributions of **5** calculated by the TDDFT method (B3LYP/6-311G(2d,p). Main contributions are highlighted in bold.

No.	wavelength [nm]	f ^[a]	Major contributions (weight%) ^[b]
1	431	0.397	HOMO→LUMO (96%)
2	337	0.008	HOMO→L+1 (98%)
3	328	0.088	H–1→LUMO (84%)
4	298	0.031	H–3→LUMO (12%), H–2→LUMO (66%), HOMO→L+2 (16%)
5	294	0.127	H–3→LUMO (61%), H–2→LUMO (18%), HOMO→L+3 (10%)
[]]			

[a] Oscillator strength. [b] H and L denote the HOMO and LUMO, respectively.

ix. References

1. G. Sheldrick, Acta. Crystallogr. Sect. A, 2015, 71, 3-8.

2. G. Sheldrick, Acta Crystallographica Section C, 2015, 71, 3-8.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. A.03*, (2016), Wallingford, CT.

4. (a) D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648–5652; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789; (c) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58** 1200–1211; (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.

5. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson and T. L. Windus, J. Chem. Inf. Model., 2019, **59**, 4814–4820.

x. Appendix

Table Appx-1. Cartesian coordinates of the DFT optimized geometry of **3** at the ground state calculated at the level of B3LYP/6-311G(2d,p).

Imaginary Freq: 0 Total Energy (Hartree): -1436.9426

	Symbol	Х	Y	Z		Symbol	Х	Y	Z
1	С	1.431861	4.287492	0.171984	26	С	3.116231	-1.213125	-0.249648
2	С	1.345851	2.899563	0.307399	27	С	-1.540447	-2.055094	1.287495
3	Ν	0.12755	2.278856	0.142754	28	С	-2.476074	-3.117639	1.447251
4	С	-0.957049	2.968196	-0.339373	29	С	-3.751368	-3.095564	0.927276
5	С	-0.864951	4.348744	-0.522613	30	С	1.035859	-2.268074	-0.767286
6	В	0.035422	0.785325	0.633089	31	С	3.17414	-3.481288	-0.998924
7	Ν	2.485853	2.183046	0.507692	32	С	1.802008	-3.425382	-1.090068
8	С	2.455388	0.897674	0.282024	33	F	0.131515	0.748129	2.025556
9	Ν	1.316981	0.14712	0.045128	34	C	0.320597	5.005179	-0.233248
10	Ν	-2.126563	2.340846	-0.65142	35	Н	2.395567	4.746312	0.336588
11	С	-2.260586	1.075202	-0.386415	36	Н	-1.742609	4.862348	-0.886148
12	Ν	-1.31641	0.250441	0.19924	37	Н	-6.249104	-2.427341	-0.302376
13	С	-3.500896	0.302658	-0.556294	38	Н	-6.701446	-0.294236	-1.401695
14	С	-1.939825	-0.962125	0.557986	39	Н	-4.987307	1.500978	-1.551144
15	С	1.709169	-1.156083	-0.321749	40	Н	5.42919	1.143153	0.524202
16	С	3.629185	0.02768	0.138313	41	Н	6.884869	-0.813765	0.035545
17	С	-3.252442	-0.930173	0.052665	42	Н	5.964146	-2.966888	-0.660164
18	С	-4.191394	-1.952578	0.201585	43	Н	-2.159298	-3.982965	2.017626
19	С	-5.462331	-1.683714	-0.364534	44	н	1.264068	-4.301704	-1.432577
20	С	-5.716783	-0.470465	-0.985256	45	Н	0.387346	6.079397	-0.358586
21	С	-4.748408	0.554388	-1.083216	46	Н	3.703341	-4.3886	-1.264949
22	С	4.993053	0.194552	0.237728	47	Н	-0.036491	-2.289962	-0.888992
23	С	5.81005	-0.921859	-0.048967	48	Н	-0.563469	-2.12088	1.745266
24	С	5.290632	-2.145305	-0.442661	49	Н	-4.420194	-3.932745	1.087905
25	С	3.891655	-2.3287	-0.571408					

Table Appx-2. Cartesian coordinates of the DFT optimized geometry of **3** at the transition state for racemization calculated at the level of B3LYP/6-311G(2d,p).

Imaginary Freq: 1

Total Energy (Hartree): -1436.9193
----------------	----------------------

	Symbol	Х	Y	Z			Symbol	Х	Y	Z
1	С	4.336433	0.286143	1.19355	-	26	С	-1.083042	-0.286718	3.221885
2	С	2.942867	0.19181	1.179591		27	С	-2.339029	0.984651	-1.671639
3	Ν	2.245514	0.318408	0		28	С	-3.442834	0.833681	-2.558419
4	С	2.942867	0.19181	-1.179591		29	С	-3.37961	0.133025	-3.738602
5	С	4.336433	0.286143	-1.19355		30	С	-2.339029	0.984651	1.671639
6	В	0.715458	0.813822	0		31	С	-3.37961	0.133025	3.738602
7	Ν	2.301894	-0.127549	2.327264		32	С	-3.442834	0.833681	2.558419
8	С	1.00421	-0.163508	2.340876		33	F	0.671804	2.20214	0
9	Ν	0.133672	0.294373	1.361534		34	С	5.028516	0.382266	0
10	Ν	2.301894	-0.127549	-2.327264		35	Н	4.827589	0.220893	-2.153124
11	С	1.00421	-0.163508	-2.340876		36	Н	-2.56198	-1.220014	-6.104734
12	Ν	0.133672	0.294373	-1.361534		37	Н	-0.256799	-1.881936	-6.578916
13	С	0.238173	-0.621275	-3.501083		38	Н	1.58879	-1.435517	-4.964179
14	С	-1.156798	0.353268	-1.965062		39	Н	1.58879	-1.435517	4.964179
15	С	-1.156798	0.353268	1.965062		40	Н	-0.256799	-1.881936	6.578916
16	С	0.238173	-0.621275	3.501083		41	Н	-2.56198	-1.220014	6.104734
17	С	-1.083042	-0.286718	-3.221885		42	Н	-4.373042	1.316396	-2.282067
18	С	-2.135317	-0.43014	-4.131086		43	Н	-4.373042	1.316396	2.282067
19	С	-1.794805	-1.05302	-5.356798		44	Н	-4.248808	0.053228	4.380354
20	С	-0.486139	-1.421476	-5.625329		45	Н	-2.452499	1.635798	0.827372
21	С	0.565305	-1.18827	-4.712907		46	Н	-2.452499	1.635798	-0.827372
22	С	0.565305	-1.18827	4.712907		47	Н	-4.248808	0.053228	-4.380354
23	С	-0.486139	-1.421476	5.625329		48	Н	6.109379	0.457877	0
24	С	-1.794805	-1.05302	5.356798		49	Н	4.827589	0.220893	2.153124
25	С	-2.135317	-0.43014	4.131086						

Table Appx-3. Cartesian coordinates of the DFT optimized geometry of **5** at the ground state calculated at the level of B3LYP/6-311G(2d,p).

Imaginary Freq: 0

Total Energy (Hartree): -1005.0116

	Symbol	Х	Y	Z			Symbol	Х	Y	Z
1	Ν	0.354414	2.446274	-0.032261	_	17	Н	-3.51973	-1.396166	0.202984
2	Ν	-1.609105	1.092016	0.126434		18	Н	3.066691	-1.387199	-0.226184
3	С	-0.867801	0.011771	0.080258		19	Н	3.155663	-3.863052	-0.293972
4	С	-1.369651	-1.372671	0.079151		20	Н	1.150223	-5.256093	-0.200691
5	С	-0.227391	-2.173809	-0.013257		21	С	-1.809037	3.459168	-0.004886
6	С	0.921053	-1.366988	-0.065041		22	Н	-2.87814	3.314881	0.058201
7	Ν	0.49656	-0.026646	-0.000199		23	С	-1.23887	4.698949	-0.133622
8	С	-0.223745	-3.567671	-0.05848		24	С	0.157663	4.815765	-0.224268
9	С	-1.505908	-4.168708	0.003373		25	С	0.909494	3.67338	-0.168099
10	С	-2.647965	-3.387899	0.095887		26	С	-1.003545	2.2994	0.038377
11	С	-2.607158	-1.974672	0.133328		27	Н	-1.863182	5.583688	-0.169858
12	С	2.152133	-1.961869	-0.169567		28	Н	0.64166	5.775891	-0.332841
13	С	2.186369	-3.385341	-0.213159		29	Н	1.988709	3.682437	-0.230853
14	Н	-1.598695	-5.248828	-0.02225		30	В	1.369319	1.220895	0.11965
15	Н	-3.612746	-3.878926	0.140702		31	F	1.973991	1.317453	1.359315
16	С	1.05912	-4.177104	-0.161054		32	F	2.311001	1.294876	-0.891018