Supporting information

Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones for

the construction of quinoxalino[2,1-*b*]quinazolinones

Xian Wu, Lingli Liu, Chengli Xiang, Jin-Tao Yu* and Changduo Pan* Email: yujintao@cczu.edu.cn; panchangduo@jsut.edu.cn

Table of Contents

1. General Considerations	S2
2. General Synthetic Procedures	S2
3. Mechanism Studies	S 3
4. Characterization Data for the Substrates and Products	S7
5. References	S23
6. Copies of the ¹ H NMR and ¹³ C NMR Spectra	S24

1. General Considerations

General Information: Unless otherwise noted, all chemicals were purchased and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature on a 400 MHz NMR spectrometer (101 MHz for ¹³C). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (*d* 7.26 or 77.0) as the internal standard. The coupling constants *J* are given in Hz. Column chromatography was performed using EM Silica gel 60 (300-400 mesh).

2. General Synthetic Procedures

2.1 General procedure for the synthesis of substrates 1:

First, to a mixture of quinazolin-4(3*H*)-one **A** (10.0 mmol) in 25 mL of *N*, *N*-dimethylformamide (DMF) were added K_2CO_3 (15.0 mmol, 1.5 equiv) and 1-fluoro-2-nitrobenzene (12 mmol, 1.2 equiv) sequentially. The mixture was refluxed at 80-90 °C for 8 h in a flask equipped with a guard tube. The reaction was quenched with H₂O and extracted with ethyl acetate (3×25 mL). The combined organic layers were washed several times with H₂O and finally with brine solution, dried over anhydrous Na₂SO₄, and concentrated under vacuum. Crude product was recrystallized from ethyl acetate to obtain **B**.¹

Then, a solution of $Na_2S_2O_4$ (40.0 mmol, 5.0 equiv) in H_2O (80 mL) was added to the solution of **B** (8.0 mmol) in dioxane (80 mL). The reaction mixture was stirred at reflux temperature for 3 h then cooled to room temperature and was poured into water. The resulting precipitate was filtered off, washed with water (2×50 mL) and dried in air to give C.²

Next, acetic formic anhydride (24.0 mmol), which was newly prepared from the reaction of acetic anhydride (2.3 mL, 24.0 mmol) with formic acid (1.1 mL, 27 mmol) at 55 °C for 2 h, was added dropwise to a mixture of **C** (4.0 mmol) in 6.0 mL THF at 0 °C. The mixture was warmed to room temperature and stirred for 3 h. Then, the reaction was quenched by saturated NaHCO₃ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum to give the products **D**. These formamides were used for the subsequent dehydration reaction without further purification. POCl₃ (1.1 mL, 12.0 mmol) was added via syringe pump to a mixture of Et₃N (5.1 mL, 36.0 mmol) and **D** (4.0 mmol) in THF (6 mL) at 0 °C within 2 hours. After that, the resulting mixture was stirred at 0 °C for another 2 hours. Then, the mixture was quenched with Sat.

 $NaHCO_3$ and extracted with CH_2Cl_2 . The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the products **1** in 30-70% yield.³

2.2 General procedure for the synthesis of products 3.

The mixture of 3-(2-Isocyanophenyl)quinazolin-4(3H)-ones **1** (0.2 mmol), Rhodamine B (2 mol%, 1.9 mg), CHP (2.0 equiv, 60.9 mg), THF (1 mL) and MeCN (1 mL) was added into a Schlenk tube and sealed. The tube was evacuated and backfilled with nitrogen (repeated five times). The mixture was stirred at room temperature for 12 hours under the irradiation of 10 W blue LED. Then, the solvent was evaporated under reduced pressure, and purified by silica gel flash column chromatography to give the products **3**.

Figure S1 Photoreactor used in this work.

3. Mechanism Studies 3.1 The KIE experiment:

The mixture of **1a** (0.2 mmol), Rhodamine B (2 mol%, 1.9 mg), CHP (2.0 equiv, 60.9 mg), THF (0.5 mL), D_8 -THF (0.5 mL) and MeCN (1 mL) was added into a Schlenk tube and sealed. The tube was evacuated and backfilled with nitrogen (repeated for five times). The mixture was stirred at room temperature for 8 hours under the irradiation of 10 W blue LEDs. Then, the solvent was evaporated under reduced pressure, and purified by silica gel flash column chromatography to give product **3aa** and **D**₇-**3aa** in 65% total yield. A KIE value of

6.7 was observed from ¹H NMR spectrum.

Figure S2. ¹H NMR spectrum of the KIE experiment

3.2 Radical inhibiting and trapping experiment

Under standard conditions, TEMPO (2.0 equiv., 0.4 mmol, 62.5 mg; or 1 equiv., 0.2 mmol, 31.2 mg), BHT (2.0 equiv, 0.4 mmol, 88.1 mg; or 1 equiv, 0.2 mmol, 44 mg) or 1,1-diphenylethylene (2.0 equiv, 0.4 mmol, 72.0 mg; or 1 equiv., 0.2 mmol, 36 mg) was added into a Schlenk tube and sealed. The tube was evacuated and backfilled with nitrogen (repeated five times). The mixture was stirred at room temperature for 12 hours under the irradiation of 10 W blue LEDs.

Figure S3. The adduct of TEMPO and tetrahydrofuran-2-yl radical detected by HRMS.

3.3 Cyclic voltammetry study

Cyclic voltammetry measurements were performed in a three-electrode cell (volume 5 mL) with glassy carbon as the working electrode, Pt wire as the auxiliary electrode, and SCE (saturated calomel electrode) as the reference electrode. The electrodes are first polished with sandpaper, then with alumina powder until the surface of the electrodes is mirror-like. Finally, the electrodes are washed with distilled water and ultrasonication. The solvent (MeCN) exhaust employs a nitrogen blast for 30 min. CHP (1 mM) was tested with tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte in 30 mL MeCN, respectively. Solutions were kept under positive pressure of nitrogen during the measurements. Cyclic voltammetry (CV) with the following settings: Scan Rates = 0.1 V/s, Sweep Segments = 10, Sample Interval = 0.001 V, Quiet Time = 2 sec. The redox potentials of CHP is $E_{1/2}^{\text{red}} = -0.89 \text{ V}$ vs SCE.

Figure S4.Cyclic voltammetry plots of CHP. Scan direction: from 0 V to -1.5 V, then back to 0 V

3.4 Alternative mechanism

Control experiments indicated that 23% yield of **3aa** was obtained in the absence of photocatalyst, and no reaction occurred in the absence of both photocatalyst and light irradiation. Moreover, the reaction did not occur in the presence of ambient oxygen or (E)-stilbene. Those results indicated that an energy transfer process maybe involved as proposed in Scheme S1.

Scheme S1. Alternative mechanism involving the EnT process.

4. Characterization Data for the Substrates and Products

3-(2-Isocyanophenyl)quinazolin-4(3*H***)-one** (**1a**, 692.3 mg, 70% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 8.37-8.34 (m, 1H), 7.99 (s, 1H), 7.85-7.77 (m, 2H), 7.62-7.54 (m, 4H), 7.49-7.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.3, 156.0, 147.8, 144.9, 135.1, 133.8, 130.7, 130.6, 129.3, 128.2, 128.1, 127.9, 127.3, 124.9, 122.1; HRMS (ESI) m/z calcd for C₁₅H₁₀N₃O [M+H]⁺ 248.0818, found 248.0811.

5-Fluoro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1b, 689.6 mg, 65% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 7.97 (s, 1H), 7.79-7.74 (m, 1H), 7.63-7.57 (m, 4H), 7.49-7.47 (m, 1H), 7.24-7.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.5, 161.6 (d,** *J***_{C-F} = 268.7 Hz), 156.9 (d,** *J***_{C-F} = 4.1 Hz), 149.8, 145.7, 135.7, 135.6 (d,** *J***_{C-F} = 10.4 Hz), 133.4, 130.8, 130.7, 129.4, 128.1, 123.8 (d,** *J***_{C-F} = 4.2 Hz), 114.9 (d,** *J***_{C-F} = 20.8 Hz), 111.9 (d,** *J***_{C-F} = 6.1 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃O [M+Na]⁺ 288.0544, found 288.0556.**

5-Chloro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1c, 709.9 mg, 63% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 7.98 (s, 1H), 7.68-7.67 (m, 2H), 7.61-7.54 (m, 4H), 7.50-7.48 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.4, 158.1, 150.2, 145.5, 134.9, 134.5, 133.5, 130.9, 130.8, 130.7, 129.4, 128.1, 127.2, 124.9, 119.4; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃O [M+H]⁺ 282.0429, found 282.0417.**

6-Fluoro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1d, 647.2 mg, 61% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.00-7.96 (m, 2H), 7.82-7.79 (m, 1H), 7.64-7.52 (m, 4H),**

7.50-7.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.4, 161.6 (d, J_{C-F} = 251.1 Hz), 159.3 (d, J_{C-F} = 3.2 Hz), 144.4 (d, J_{C-F} = 2.1 Hz), 144.2 (d, J_{C-F} = 2.5 Hz), 133.6, 130.8, 130.7, 130.4 (d, J_{C-F} = 8.2 Hz), 129.2, 128.2, 123.6 (d, J_{C-F} = 24.0 Hz), 123.5, 112.4 (d, J_{C-F} = 24.1 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃O [M+H]⁺ 266.0724, found 266.0715.

6-Chloro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1e, 619.7 mg, 55% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.31 (m, 1H), 7.98 (s, 1H), 7.78-7.72 (m, 2H), 7.63-7.58 (m, 3H), 7.49-7.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.5, 159.0, 146.3, 145.0, 135.5, 134.0, 133.5, 130.9, 130.8, 129.6, 129.1, 128.2, 126.7, 124.8, 123.2; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃O [M+H]⁺ 282.0429, found 282.0421.**

6-Bromo-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1f, 769.7 mg, 59% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.46 (d,** *J* **= 2.3 Hz, 1H), 7.99 (s, 1H), 7.90 (m, 1H), 7.67-7.58 (m, 4H), 7.52–7.43 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.5, 158.8, 146.6, 145.2, 138.3, 133.5, 130.9, 130.8, 129.8, 129.7, 129.1, 128.2, 127.2, 123.5, 121.8; HRMS (ESI) m/z calcd for C₁₅H₈BrN₃O [M+H]⁺ 325.9924, found 325.9929.**

7-Fluoro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1g, 498.7 mg, 47% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.39 (m, 1H), 8.02 (s, 1H), 7.65-7.59 (m, 3H), 7.51-7.43 (m, 2H), 7.32-7.27 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.4, 166.8 (d,** *J***_{C-F} = 256.9 Hz), 159.2, 150.0 (d,** *J***_{C-F} = 12.9 Hz), 146.1, 133.5, 130.8, 130.7, 130.1 (d,** *J***_{C-F} = 10.8 Hz), 129.2, 128.2, 118.8 (d,** *J***_{C-F} = 2.2 Hz), 116.8 (d,** *J***_{C-F} = 23.6 Hz), 113.5 (d,** *J***_{C-F} = 22.3 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃O [M+H]⁺ 266.0724, found 266.0719.**

7-Chloro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1h, 439.5 mg, 39% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.28 (d,** *J* **= 8.5 Hz, 1H), 8.00 (s, 1H), 7.77 (d,** *J* **= 2.0 Hz, 1H), 7.63-7.57 (m, 3H), 7.53-7.46 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.5, 159.4, 148.7, 146.1, 141.4, 133.5, 130.9, 130.8, 129.2, 128.8, 128.7, 128.2, 127.5, 124.8, 120.6; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃NaO [M+Na]⁺ 304.0248, found 304.0241.**

8-Fluoro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1i, 424.4 mg, 40% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.15-8.12 (m, 1H), 8.03 (s, 1H), 7.64-7.48 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.5, 159.0 (d,** *J***_{C-F} = 3.1 Hz), 157.2 (d,** *J***_{C-F} = 257.8 Hz), 145.4, 137.1 (d,** *J***_{C-F} = 12.2 Hz), 133.5, 130.9, 130.8, 129.1, 128.4 (d,** *J***_{C-F} = 7.8 Hz), 128.2, 123.9, 122.8 (d,** *J***_{C-F} = 4.3 Hz), 120.7 (d,** *J***_{C-F} = 19.0 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃NaO [M+Na]⁺ 288.0544, found 288.0546.**

8-Chloro-3-(2-isocyanophenyl)quinazolin-4(3*H***)-one (1j, 473.3 mg, 42% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.28-8.25 (m, 1H), 8.10 (s, 1H), 7.91-7.89 (m, 1H), 7.64-7.56 (m, 3H), 7.51-7.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.6, 159.4, 145.6, 144.5, 135.4, 133.4, 132.2, 131.0, 130.8, 129.1, 128.3, 128.2, 126.2, 124.8, 123.7; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃O [M+H]⁺ 282.0429, found 282.0417.**

3-(2-Isocyanophenyl)-6-methylquinazolin-4(3*H***)-one (1k, 606.2 mg, 58% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.14 (s, 1H), 7.94 (s, 1H), 7.68-7.53 (m, 5H), 7.48-7.46 (m, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.2, 160.0, 145.7, 144.1, 138.5, 136.7, 134.0, 130.7, 130.6, 129.2, 128.1, 127.7, 126.7, 124.9, 121.8, 21.4; HRMS (ESI) m/z calcd for C₁₆H₁₁N₃O [M+H]⁺ 262.0975, found 262.0975.**

3-(2-Isocyanophenyl)-7-methylquinazolin-4(*3H*)-one (11, 459.9 mg, 44% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 8.24 (d, *J* = 8.1 Hz, 1H), 7.97 (s, 1H), 7.62-7.54 (m, 4H), 7.49-7.47 (m, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 170.2, 160.0, 147.9, 146.3, 144.9, 133.9, 130.7, 130.6, 129.6, 129.3, 128.1, 127.7, 127.1, 125.0, 119.6, 22.0; HRMS (ESI) m/z calcd for C₁₆H₁₁N₃O [M+H]⁺ 262.0975, found 262.0979.

3-(2-Isocyanophenyl)-8-methylquinazolin-4(3*H***)-one (1m, 658.4 mg, 63% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.22-8.19 (m, 1H), 8.01 (s, 1H), 7.67 (d,** *J* **= 7.4 Hz, 1H), 7.62-7.53 (m, 3H), 7.49-7.42 (m, 2H), 2.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.2, 160.4, 146.3, 143.6, 136.4, 135.8, 134.0, 130.7, 130.6, 129.3, 128.1, 127.6, 125.0, 123.8, 122.1, 17.6; HRMS (ESI) m/z calcd for C₁₆H₁₁N₃O [M+H]⁺ 262.0975, found 262.0968.**

3-(2-Isocyanophenyl)-7,8-dimethylquinazolin-4(3*H***)-one (1n, 649.7 mg, 59% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.12 (d,** *J* **= 8.1 Hz, 1H), 7.98 (s, 1H), 7.62-7.54 (m, 3H), 7.49-7.47 (m, 1H), 7.37 (d,** *J* **= 8.1 Hz, 1H), 2.59 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.1, 160.5, 146.1, 144.4, 143.3, 134.5, 134.1, 130.6, 130.5, 129.9, 129.3, 128.1, 124.9, 124.1, 120.0, 21.2, 13.3; HRMS (ESI) m/z calcd for C₁₇H₁₃N₃O [M+H]⁺ 276.1131, found 276.1120.**

6-Chloro-3-(2-isocyanophenyl)-8-methylquinazolin-4(3*H***)-one (10, 674.3 mg, 57% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.15 (d,** *J* **= 2.5 Hz, 1H), 7.98 (s, 1H), 7.62-7.57 (m, 4H), 7.48-7.46 (m, 1H), 2.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.4, 159.4, 145.0,**

143.8, 138.8, 135.8, 133.6, 133.4, 130.78, 130.75, 129.1, 128.2, 124.8, 124.2, 123.2, 17.5; HRMS (ESI) m/z calcd for C₁₆H₁₀ClN₃O [M+H]⁺ 296.0585, found 296.0593.

3-(5-Fluoro-2-isocyanophenyl)quinazolin-4(3*H***)-one (1p, 456.2 mg, 43% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.38-8.36 (m, 1H), 7.99 (s, 1H), 7.88-7.79 (m, 2H), 7.65-7.58 (m, 2H), 7.33-7.26 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): \delta = 170.6, 162.2 (d,** *J***_{C-F} = 256.9 Hz), 159.7, 147.6, 144.2, 135.4, 135.3, 129.7 (d,** *J***_{C-F} = 9.5 Hz), 128.3, 128.0, 127.3, 122.0, 118.0 (d,** *J***_{C-F} = 23.1 Hz), 117.3 (d,** *J***_{C-F} = 25.2 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃O [M+H]⁺ 266.0724, found 266.0715.**

3-(5-Chloro-2-isocyanophenyl)quinazolin-4(3*H***)-one (1q, 450.7 mg, 40% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.38-8.35 (m, 1H), 7.97 (s, 1H), 7.87-7.79 (m, 2H), 7.61-7.52 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): \delta = 171.7, 159.8, 147.6, 144.2, 136.4, 135.3, 134.8, 131.0, 129.7, 129.0, 128.3, 128.0, 127.3, 124.4, 122.0; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃O [M+H]⁺ 282.0429, found 282.0418.**

3-(5-Bromo-2-isocyanophenyl)quinazolin-4(3*H***)-one (1r, 587.1 mg, 45% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.36-8.34 (m, 1H), 7.97 (s, 1H), 7.86-7.82 (m, 1H), 7.80-7.77 (m, 1H), 7.72-7.66 (m, 2H), 7.60-7.56 (m, 1H), 7.48 (d,** *J* **= 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 171.9, 159.8, 147.6, 144.2, 135.3, 134.8, 133.9, 132.5, 129.1, 128.3, 128.0, 127.3, 124.0, 123.9, 121.9; HRMS (ESI) m/z calcd for C₁₅H₈BrN₃O [M+H]⁺ 325.9924, found 325.9917.**

3-(3-Fluoro-2-isocyanophenyl)quinazolin-4(3H)-one (1s, 318.3 mg, 30% yield), flash

column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ =8.36 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 1H), 7.86-7.78 (m, 2H), 7.61-7.56 (m, 2H), 7.41 (t, *J* = 8.5 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 176.3, 159.7, 158.2 (d, *J*_{C-F} = 261.2 Hz), 147.6, 144.3, 135.3, 135.2, 131.0 (d, *J*_{C-F} = 8.9 Hz), 128.3, 128.0, 127.4, 124.5 (d, *J*_{C-F} = 3.6 Hz), 121.9, 117.9 (d, *J*_{C-F} = 18.9 Hz); HRMS (ESI) m/z calcd for C₁₅H₈FN₃O [M+H]⁺ 266.0724, found 266.0717.

3-(3-Chloro-2-isocyanophenyl)quinazolin-4(3*H***)-one (1t, 428.2 mg, 38% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.38-7.36 (m, 1H), 7.99 (s, 1H), 7.88-7.79 (m, 2H), 7.70-7.67 (m, 1H), 7.61-7.53 (m, 2H), 7.42-7.40 (m 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 175.3, 159.8, 147.7, 144.3, 135.3, 135.2, 132.8, 131.3, 130.5, 128.3, 128.0, 127.5, 127.4, 125.5, 122.0; HRMS (ESI) m/z calcd for C₁₅H₈ClN₃O [M+H]⁺ 282.0429, found 282.0422.**

3-(2-Isocyano-4-methylphenyl)quinazolin-4(3*H***)-one (1u, 480.8 mg, 46% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.37-8.34 (m, 1H), 7.98 (s, 1H), 7.84-7.76 (m, 2H), 7.58-7.54 (m, 1H), 7.41-7.33 (m, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 169.7, 160.1, 147.8, 145.1, 141.5, 135.0, 131.4, 131.2, 128.8, 128.5, 128.0, 127.9, 127.3, 124.5, 122.2, 21.1; HRMS (ESI) m/z calcd for C₁₆H₁₁N₃O [M+H]⁺ 262.0975, found 262.0983.**

3-(5-Chloro-2-isocyano-4-methylphenyl)quinazolin-4(3*H***)-one (1v, 508.7 mg, 43% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 2/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 8.36-8.33 (m, 1H), 7.96 (s, 1H), 7.85-7.76 (m, 2H), 7.59-7.55 (m, 1H), 7.48 (d,** *J* **= 1.9 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 171.0, 159.9, 147.7, 144.5, 139.8, 136.3, 135.2, 132.1, 129.7, 128.2, 128.0, 127.6, 127.3, 123.1, 122.0, 20.0; HRMS (ESI) m/z calcd for C₁₆H₁₀ClN₃O [M+H]⁺ 296.0585, found 296.0595.**

6-(Tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3aa, 45.7 mg, 72% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.59-9.56 (m, 1H), 8.46-8.44 (m, 1H), 8.01-7.99 (m, 1H), 7.87-7.81 (m, 2H), 7.61-7.51 (m, 3H), 5.95-5.91 (m, 1H), 4.33-4.28 (m, 1H), 4.12-4.07 (m, 1H), 2.70-2.62 (m, 1H), 2.20-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.9, 161.5, 145.4, 138.5, 135.0, 134.8, 130.2, 129.3, 128.1, 128.0, 127.9, 127.3, 127.2, 121.3, 120.4, 77.3, 69.4, 31.5, 25.7; HRMS (ESI) m/z calcd for C₁₉H₁₅N₃O₂ [M+H]⁺ 318.1237, found 318.1224.**

11-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ba, 44.9 mg, 67% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.41-9.39 (m, 1H), 7.99-7.97 (m, 1H), 7.78-7.73 (m, 1H), 7.65-7.62 (m, 1H), 7.57-7.50 (m, 2H), 7.24-7.19 (m, 1H), 5.89-5.85 (m, 1H), 4.30-4.24 (m, 1H), 4.10-4.05 (m, 1H), 2.65-2.58 (m, 1H), 2.20-2.05 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.3 (d,** *J***_{C-F} = 268.4 Hz), 161.1, 158.9 (d,** *J***_{C-F} = 4.8 Hz), 147.4, 139.1, 135.1 (d,** *J***_{C-F} = 10.5 Hz), 135.0, 130.2, 129.5, 127.5, 127.4, 123.9 (d,** *J***_{C-F} = 4.4 Hz), 120.1, 114.2 (d,** *J***_{C-F} = 20.9 Hz), 110.8 (d,** *J***_{C-F} = 5.1 Hz), 77.2, 69.4, 31.4, 25.7; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1143.**

11-Chloro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ca, 52.1 mg, 74% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.30-9.28 (m, 1H), 7.99-7.97 (m, 1H), 7.75-7.72 (m, 1H), 7.66 (t,** *J* **= 7.9 Hz, 1H), 7.56-7.51 (m, 3H), 5.88-5.85 (m, 1H), 4.31-4.25 (m, 1H), 4.10-4.05 (m, 1H), 2.65-2.57 (m, 1H), 2.20-2.05 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.1, 159.8, 147.8, 138.9, 135.1, 134.3, 134.0, 130.4, 130.2, 129.4, 127.4, 127.3, 127.2, 120.0, 118.2, 77.1, 69.4, 31.4, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+H]⁺**

352.0847, found 352.0842.

10-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3da, 41.6 mg, 62% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.58-9.55 (m, 1H), 8.09-8.06 (m, 1H), 8.01-7.99 (m, 1H), 7.90-7.87 (m, 1H), 7.61-7.56 (m, 3H), 5.93-5.90 (m, 1H), 4.32-4.26 (m, 1H), 4.12-4.07 (m, 1H), 2.67-2.59 (m, 1H), 2.22-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.6 (d, J_{C-F} = 251.8 Hz), 161.3, 161.2 (d, J_{C-F} = 3.8 Hz), 142.1 (d, J_{C-F} = 2.0 Hz), 137.9 (d, J_{C-F} = 2.2 Hz), 135.1, 130.6 (d, J_{C-F} = 8.2 Hz), 130.2, 129.4, 127.9, 127.5, 123.8 (d, J_{C-F} = 24.4 Hz), 122.5 (d, J_{C-F} = 8.8 Hz), 120.4, 112.1 (d, J_{C-F} = 24.2 Hz), 77.3, 69.4, 31.4, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1140.**

10-Chloro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ea, 47.8 mg, 68% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.54-9.51 (m, 1H), 8.38-8.38 (m, 1H), 8.01-7.98 (m, 1H), 7.81-7.74 (m, 2H), 7.59-7.52 (m, 2H), 5.92-5.88 (m, 1H), 4.31-4.26 (m, 1H), 4.11-4.06 (m, 1H), 2.66-2.58 (m, 1H), 2.21-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.3, 160.8, 143.9, 138.5, 135.3, 135.0, 133.9, 130.2, 129.7, 129.5, 127.9, 127.6, 126.6, 122.1, 120.3, 77.3, 69.4, 31.4, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+Na]⁺ 374.0667, found 374.0665.**

10-Bromo-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3fa, 58.6 mg, 74% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.51-9.49 (m, 1H), 8.53 (d,** *J* **= 2.3 Hz, 1H), 7.99-7.97 (m, 1H), 7.89-7.87 (m, 1H), 7.70 (d,** *J* **= 8.7 Hz, 1H), 7.58-7.50 (m, 2H), 5.91-5.87 (m, 1H), 4.30-4.25 (m, 1H), 4.11-4.05 (m, 1H), 2.65-2.57 (m, 1H), 2.20-2.03 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.3, 160.7, 144.2, 138.6, 138.0, 135.0, 130.2, 129.8,**

129.7, 129.5, 127.9, 127.5, 122.4, 121.7, 120.3, 77.3, 69.4, 31.4, 25.8; HRMS (ESI) m/z calcd for $C_{19}H_{14}BrN_3O_2$ [M+H]⁺ 396.0342, found 396.0328.

9-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ga, 42.9 mg, 64% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.55-9.53 (m, 1H), 8.47-8.43 (m, 1H), 8.02-7.99 (m, 1H), 7.59-7.52 (m, 2H), 7.50-7.47 (m, 1H), 7.33-7.28 (m, 1H), 5.91-5.88 (m, 1H), 4.32-4.26 (m, 1H), 4.12-4.06 (m, 1H), 2.67-2.59 (m, 1H), 2.20-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 166.7 (d,** *J***_{C-F} = 257.0 Hz), 161.2, 161.1, 147.5 (d,** *J***_{C-F} = 13.4 Hz), 139.4, 135.0, 130.25, 130.23 (d,** *J***_{C-F} = 10.8 Hz), 129.5, 127.9, 127.4, 120.3, 117.97 (d,** *J***_{C-F} = 1.8 Hz), 117.0 (d,** *J***_{C-F} = 23.9 Hz), 112.9 (d,** *J***_{C-F} = 21.8 Hz), 77.3, 69.4, 31.5, 25.7; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1142.**

9-Chloro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ha, 49.3 mg, 70% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.55-9.53 (m, 1H), 8.36 (d,** *J* **= 8.6 Hz, 1H), 8.02-8.00 (m, 1H), 7.86 (d,** *J* **= 2.0 Hz, 1H), 7.60-7.51 (m, 3H), 5.90-5.87 (m, 1H), 4.32-4.27 (m, 1H), 4.12-4.07 (m, 1H), 2.68-2.60 (m, 1H), 2.18-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.4, 161.3, 146.3, 141.2, 139.3, 135.0, 130.3, 129.6, 128.9, 128.6, 127.9, 127.5, 127.3, 120.3, 119.6, 77.3, 69.4, 31.5, 25.7; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+H]⁺ 352.0847, found 352.0852.**

8-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ia, 53.7 mg, 80% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.54-9.51 (m, 1H), 8.22-8.19 (m, 1H), 8.03-8.00 (m, 1H), 7.59-7.49 (m, 4H), 5.91-5.88 (m, 1H), 4.33-4.27 (m, 1H), 4.11-4.06 (m, 1H), 2.76-2.69 (m, 1H), 2.17-2.07 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.6, 161.0 (d,**

 $J_{C-F} = 3.2 \text{ Hz}$), 157.3 (d, $J_{C-F} = 259.9 \text{ Hz}$), 138.5, 135.3, 135.1, 130.3, 129.5, 128.0 (d, $J_{C-F} = 7.6 \text{ Hz}$), 127.8, 127.6, 123.0, 122.8 (d, $J_{C-F} = 4.6 \text{ Hz}$), 120.3, 120.0 (d, $J_{C-F} = 18.4 \text{ Hz}$), 77.7, 69.4, 31.7, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1138.

8-Chloro-6-(tetrahydrofuran-2-yl)-12*H*-quinoxalino[2,1-*b*]quinazolin-12-one (3ja, 51.4 mg, 73% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 9.52-9.48 (m, 1H), 8.29-8.27 (m, 1H), 8.03-8.00 (m, 1H), 7.87-7.84 (m, 1H), 7.57-7.51 (m, 2H), 7.44 (t, *J* = 7.9 Hz, 1H), 5.90-5.87 (m, 1H), 4.33-4.27 (m, 1H), 4.12-4.07 (m, 1H), 2.86-2.80 (m, 1H), 2.14-2.05 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 161.8, 161.3, 142.1, 138.4, 135.1, 134.8, 132.6, 130.3, 129.5, 127.8, 127.7, 127.6, 126.0, 122.6, 120.2, 77.9, 69.4, 32.0, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+H]⁺ 352.0847, found 352.0854.

10-Methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ka, 45.1 mg, 68% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.59-9.56 (m, 1H), 8.24-8.22 (m, 1H), 8.00-7.98 (m, 1H), 7.76-7.74 (m, 1H), 7.67-7.63 (m, 1H), 7.58-7.50 (m, 2H), 5.94-5.90 (m, 1H), 4.33-4.27 (m, 1H), 4.12-4.06 (m, 1H), 2.67-2.62 (m, 1H), 2.54 (s, 3H), 2.20-2.04 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.9, 161.5, 143.4, 138.9, 137.9, 136.4, 135.0, 130.1, 129.2, 128.3, 127.9, 127.2, 126.6, 121.0, 120.4, 77.3, 69.4, 31.5, 25.7, 21.7; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1389.**

9-Methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3la, 48.3 mg, 73% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.59-9.56 (m, 1H), 8.31 (d,** *J* **= 8.2 Hz, 1H), 8.00-7.97 (m, 1H), 7.63 (s, 1H), 7.57-7.49 (m, 2H), 7.39-7.37 (m, 1H), 5.92-5.89 (m, 1H), 4.33-4.27 (m, 1H), 4.12-4.06 (m, 1H), 2.69-2.61 (m, 1H), 2.52 (s, 3H), 2.17-2.07 (m,**

3H); ¹³C NMR (101 MHz, CDCl₃): δ = 161.9, 161.5, 146.0, 145.5, 138.6, 135.0, 130.1, 129.7, 129.3, 128.3, 127.6, 127.1, 120.4, 118.9, 77.4, 69.4, 31.6, 25.7, 22.0; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1384.

8-Methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ma, 45.1 mg, 68% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow soild; ¹H NMR (400 MHz, CDCl₃): \delta = 9.57-9.55 (m, 1H), 8.23-8.21 (m, 1H), 8.00-7.98 (m, 1H), 7.63-7.60 (m, 1H), 7.54-7.50 (m, 2H), 7.41 (t,** *J* **= 7.7 Hz, 1H), 5.92-5.89 (m, 1H), 4.34-4.29 (m, 1H), 4.11-4.06 (m, 1H), 2.73-2.67 (m, 1H), 2.65 (s, 3H), 2.14-2.03 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 162.1, 161.9, 143.8, 137.2, 136.5, 135.1, 135.0, 130.1, 129.2, 128.1, 127.7, 127.2, 124.9, 121.2, 120.4, 77.6, 69.4, 32.0, 25.6, 17.3; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1387.**

8,9-Dimethyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3na, 51.1 mg, 74% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.61-9.58 (m, 1H), 8.16 (d,** *J* **= 8.2 Hz, 1H), 8.01-7.98 (m, 1H), 7.57-7.49 (m, 2H), 7.35 (d,** *J* **= 8.2 Hz, 1H), 5.96-5.93 (m, 1H), 4.36-4.30 (m, 1H), 4.14-4.08 (m, 1H), 2.74-2.69 (m, 1H), 2.60 (s, 3H), 2.43 (s, 3H), 2.15-2.04 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 162.2, 162.0, 143.9, 143.5, 137.2, 135.0, 134.4, 130.2, 130.1, 129.2, 128.2, 127.1, 124.1, 120.4, 119.2, 77.6, 69.4, 32.0, 25.6, 20.9, 13.1; HRMS (ESI) m/z calcd for C₂₁H₁₉N₃O₂ [M+H]⁺ 346.1550, found 346.1558.**

10-Chloro-8-methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino**[**2,1-***b*]**quinazolin-12-one** (**30a**, 52.0 mg, 71% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 9.52-9.50 (m, 1H), 8.16 (d, *J* = 2.3 Hz, 1H), 8.00-7.97 (m, 1H), 7.58 (d, *J* = 2.4 Hz, 1H), 7.54-7.51 (m, 2H), 5.92-5.88 (m, 1H), 4.33-4.28 (m, 1H), 4.12-4.06 (m, 1H), 2.72-2.67 (m, 1H), 2.64 (s, 3H), 2.14-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 161.7, 161.0, 142.5, 138.8, 137.4, 135.3, 135.1, 133.4, 130.2, 129.4, 127.8, 127.5, 124.1, 122.0, 120.3, 77.4, 69.4, 31.9, 25.7, 17.2; HRMS (ESI) m/z calcd for C₂₀H₁₆ClN₃O₂ [M+H]⁺ 366.1004, found 366.1004.

2-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3pa, 49.0 mg, 73% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.44-9.40 (m, 1H), 8.43-8.40 (m, 1H), 7.99-7.95 (m, 1H), 7.84 (d,** *J* **= 3.9 Hz, 2H), 7.61-7.57 (m, 1H), 7.27-7.23 (m, 1H), 5.92-5.88 (m, 1H), 4.31-4.26 (m, 1H), 4.12-4.06 (m, 1H), 2.69-2.61 (m, 1H), 2.21-2.04 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.9 (d,** *J***_{C-F} = 248.9 Hz), 161.8, 160.6, 145.3, 138.0, 135.0, 131.7, 131.4 (d,** *J***_{C-F} = 9.9 Hz), 128.9 (d,** *J***_{C-F} = 12.5 Hz), 128.2, 128.1, 127.3, 120.9, 114.8 (d,** *J***_{C-F} = 23.2 Hz), 108.1 (d,** *J***_{C-F} = 32.0 Hz), 77.3, 69.4, 31.5, 25.7; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1138.**

2-Chloro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3qa, 49.3 mg, 78% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.68 (d,** *J* **= 2.2 Hz, 1H), 8.44-8.42 (m, 1H), 7.91 (d,** *J* **= 8.5 Hz, 1H), 7.87-7.85 (m, 2H), 7.63-7.59 (m, 1H), 7.51-7.48 (m, 1H), 5.92-5.89 (m, 1H), 4.31-4.26 (m, 1H), 4.12-4.06 (m, 1H), 2.70-2.62 (m, 1H), 2.16-2.6 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.78, 161.77, 145.2, 138.0, 135.09, 135.06, 133.6, 130.9, 128.6, 128.3, 128.1, 127.6, 127.4, 121.1, 120.5, 77.3, 69.4, 31.6, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+H]⁺ 352.0847, found 352.0841.**

2-Bromo-6-(tetrahydrofuran-2-yl)-12*H*-quinoxalino[2,1-*b*]quinazolin-12-one (3ra, 60.2

mg, 76% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 9.85 (t, *J* = 1.9 Hz, 1H), 8.47-8.44 (m, 1H), 7.88-7.84 (m, 3H), 7.67-7.61 (m, 2H), 5.93-7.89 (m, 1H), 4.31-4.26 (m, 1H), 4.12-4.07 (m, 1H), 2.70-2.63 (m, 1H), 2.20-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 162.0, 161.8, 145.3, 138.0, 135.1, 134.0, 131.1, 130.6, 128.8, 128.4, 128.2, 127.4, 123.4, 123.3, 121.1, 77.3, 69.5, 31.6, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄BrN₃O₂ [M+Na]⁺ 418.0162, found 418.0168.

4-Fluoro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3sa, 40.2 mg, 60% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.37-9.34 (m, 1H), 8.45-8.42 (m, 1H), 7.89-7.84 (m, 2H), 7.63-7.59 (m, 1H), 7.54-7.48 (m, 1H), 7.31-7.28 (m, 1H), 6.00-5.96 (m, 1H), 4.33-4.27 (m, 1H), 4.13-4.08 (m, 1H), 2.62-2.53 (m, 1H), 2.32-2.24 (m, 1H), 2.19-2.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): \delta = 161.88 (d, J_{C-F} = 2.1 Hz), 161.81, 157.8 (d, J_{C-F} = 256.9 Hz), 145.3, 138.2, 135.0, 129.4 (d, J_{C-F} = 8.9 Hz), 129.3, 128.3, 128.2, 127.4, 125.1 (d, J_{C-F} = 12.8 Hz), 121.3, 116.0 (d, J_{C-F} = 4.3 Hz), 113.8 (d, J_{C-F} = 19.3 Hz), 77.3, 69.4, 31.1, 25.8; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₃O₂ [M+H]⁺ 336.1143, found 336.1140.**

4-Chloro-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ta, 50.0 mg, 71% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.48-9.45 (m, 1H), 8.43-8.40 (m, 1H), 7.89-7.83 (m, 2H), 7.62-7.57 (m, 2H), 7.47-7.43 (m, 1H), 6.08-6.05 (m, 1H), 4.37-4.31 (m, 1H), 4.15-4.09 (m, 1H), 2.54-2.45 (m, 1H), 2.40-2,32 (m, 1H), 2.27-2.17 (m, 1H), 2.14-2.06 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 162.2, 161.9, 145.4, 138.1, 135.0, 134.5, 131.9, 129.6, 129.1, 128.3, 128.2, 128.1, 127.4, 121.2, 119.0, 76.8, 69.4, 30.7, 25.5; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₂ [M+H]⁺ 352.0847, found 352.0845.**

3-Methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ua, 47.1 mg, 71% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.46-9.43 (m, 1H), 8.43-8.40 (m, 1H), 7.84-7.78 (m, 3H), 7.58-7.53 (m, 1H), 7.36-7.33 (m, 1H), 5.94-5.90 (m, 1H), 4.31-4.26 (m, 1H), 4.11-4.06 (m, 1H), 2.68-2.59 (m, 1H), 2.46 (s, 3H), 2.19-2.05 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.8, 161.3, 145.4, 138.5, 137.3, 134.9, 134.6, 130.3, 130.1, 128.0, 127.8, 127.2, 125.8, 121.2, 120.1, 77.3, 69.4, 31.5, 25.8, 20.8; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1391.**

2-Chloro-3-methyl-6-(tetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3va**, 57.8 mg, 79% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 9.65 (s, 1H), 8.41-8.35 (m, 1H), 7.83-7.81 (m, 3H), 7.60-7.54 (m, 1H), 5.91-5.87 (m, 1H), 4.30-4.25 (m, 1H), 4.11-4.05 (m, 1H), 2.69-2.60 (m, 1H), 2.45 (s, 3H), 2.17-2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ = 161.6, 145.3, 138.0, 135.5, 135.4, 134.9, 133.6, 131.3, 128.1, 128.0, 127.3, 126.4, 121.0, 120.7, 77.3, 69.4, 31.5, 25.8, 19.8; HRMS (ESI) m/z calcd for C₂₀H₁₆ClN₃O₂ [M+H]⁺ 366.1004, found 366.1010.

6-(Tetrahydro-2*H***-pyran-2-yl)-12***H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ab, 42.4 mg, 64% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.57-9.55 (m, 1H), 8.46-8.44 (m, 1H), 8.11-8.09 (m, 1H), 7.87-7.82 (m, 2H), 7.62-7.51 (m, 3H), 5.58-5.55 (m, 1H), 4.37-4.32 (m, 1H), 3.84-3.77 (m, 1H), 2.29-2.25 (m, 1H), 2.06-1.99 (m, 1H), 1.94-1.86 (m, 2H), 1.80-1.62 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.9, 160.7, 145.3, 138.0, 135.1, 134.8, 130.2, 129.4, 127.98, 127.93, 127.90, 127.3, 127.2, 121.2, 120.3, 76.4, 69.6, 31.0, 25.7, 23.9; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1389.**

6-(1,4-Dioxan-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ac, 38.7 mg, 58% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.58-9.55 (m, 1H), 8.45-8.43 (m, 1H), 8.09-8.07 (m, 1H), 7.88-7.83 (m, 2H), 7.62-7.52 (m, 3H), 5.87-5.84 (m, 1H), 4.48-4.45 (m, 1H), 4.21-4.17 (m, 1H), 4.12-4.06 (m, 1H), 3.95-3.86 (m, 2H), 3.75-3.70 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 161.8, 157.1, 145.2, 138.1, 135.0, 134.9, 130.3, 130.0, 128.3, 128.0, 127.4, 127.3, 121.2, 120.4, 74.9, 70.4, 67.7, 66.5; HRMS (ESI) m/z calcd for C₁₉H₁₅N₃O₃ [M+H]⁺ 334.1186, found 334.1192.**

11-Chloro-6-(1,4-dioxan-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3cc, 44.1 mg, 60% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.32-9.30 (m, 1H), 8.10-8.07 (m, 1H), 7.80-7.77 (m, 1H), 7.72 (t,** *J* **= 7.9 Hz, 1H), 7.61-7.53 (m, 3H), 5.82-5.79 (m, 1H), 4.44-4.41 (m, 1H), 4.20-4.16 (m, 1H), 4.11-4.05 (m, 1H), 3.95-3.86 (m, 2H), 3.75-3.70 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 159.6, 156.7, 147.7, 138.5, 135.0, 134.4, 134.3, 130.7, 130.5, 130.1, 127.6, 127.2, 120.0, 118.2, 74.7, 70.3, 67.7, 66.4; HRMS (ESI) m/z calcd for C₁₉H₁₄ClN₃O₃ [M+H]⁺ 368.0796, found 368.0813.**

10-Chloro-6-(1,4-dioxan-2-yl)-8-methyl-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3oc, 44.3 mg, 58% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.56-9.53 (m, 1H), 8.22 (d,** *J* **= 2.4 Hz, 1H), 8.09-8.07 (m, 1H), 7.64-7.54 (m, 3H), 5.80-5.77 (m, 1H), 4.47-4.44 (m, 1H), 4.21-4.17 (m, 1H), 4.11-4.05 (m, 1H), 3.95-3.87 (m, 2H), 3.80-3.75 (m, 1H), 2.70 (s, 3H); ¹³C**

NMR (101 MHz, CDCl₃): δ = 161.0, 157.0, 142.3, 138.9, 137.1, 135.6, 135.0, 133.7, 130.4, 130.1, 127.8, 127.7, 124.2, 122.1, 120.4, 75.1, 70.4, 67.7, 66.5, 17.3; HRMS (ESI) m/z calcd for C₂₀H₁₆ClN₃O₃ [M+H]⁺ 382.0953, found 382.0945.

6-(2-Methyltetrahydrofuran-2-yl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ad, 45.1 mg, 68% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.53-9.50 (m, 1H), 8.47-8.45 (m, 1H), 8.06-8.03 (m, 1H), 7.88-7.84 (m, 2H), 7.63-7.50 (m, 3H), 4.18-4.07 (m, 2H), 2.79-2.71 (m, 1H), 2.49-2.42 (m, 1H), 2.14-2.04 (m, 1H), 1.95 (s, 3H), 1.92-1.87 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): \delta = 163.4, 162.1, 144.9, 137.7, 134.8, 134.7, 130.4, 129.3, 128.1, 128.0, 127.8, 127.3, 127.2, 121.1, 120.1, 86.1, 67.7, 37.9, 26.6, 25.6; HRMS (ESI) m/z calcd for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1386.**

6-(1,2-Dimethoxyethyl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3ae, 23.5 mg, 35% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.62-9.60 (m, 1H), 8.50-8.47 (m, 1H), 8.09-8.06 (m, 1H), 7.91-7.86 (m, 2H), 7.66-7.55 (m, 3H), 5.76 (t,** *J* **= 5.0 Hz, 1H), 3.94 (d,** *J* **= 5.0 Hz, 2H), 3.58 (s, 3H), 3.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 162.0, 158.2, 145.4, 138.9, 135.1, 135.0, 130.4, 129.8, 128.2, 128.1, 128.0, 127.4, 121.3, 120.4, 78.4, 74.4, 59.5, 58.4; HRMS (ESI) m/z calcd for C₁₉H₁₇N₃O₂ [M+H]⁺ 336.1343, found 336.1355.**

6-(1-Ethoxyethyl)-12*H***-quinoxalino[2,1-***b***]quinazolin-12-one (3af, 19.2 mg, 30% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta = 9.58-9.56 (m, 1H), 8.46-8.44 (m, 1H), 8.05-8.03 (m, 1H), 7.87-7.82 (m, 2H), 7.61-7.52 (m, 3H), 5.73-5.68 (m, 1H), 3.75-3.59 (m, 2H), 1.66 (d,** *J* **= 6.5 Hz, 3H), 1.30 (t,** *J* **= 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): \delta = 162.1, 162.0, 145.4, 138.7, 135.2, 134.8, 130.2, 129.4, 128.1, 128.0, 127.9, 127.4, 127.3, 121.2, 120.4, 73.2, 65.3, 20.3, 15.6; HRMS (ESI) m/z calcd for C₁₉H₁₅N₃O₂ [M+Na]⁺ 320.1394, found 320.1386.**

6-(**Tetrahydrothiophen-2-yl**)-12*H*-quinoxalino[2,1-*b*]quinazolin-12-one (**3ag**, 34.0 mg, 51% yield), flash column chromatography on silica gel (petroleum ether/ethyl acetate 5/1) gave yellow solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.58-9.56$ (m, 1H), 8.46-8.43 (m, 1H), 7.92-7.83 (m, 3H), 7.61-7.49 (m, 3H), 5.43-5.40 (m, 1H), 2.99-2.90 (m, 3H), 2.52-2.42 (m, 1H), 2.31-2.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 162.1$, 161.6, 145.3, 139.2, 135.0, 134.8, 129.8, 129.1, 128.2, 128.1, 127.9, 127.3, 127.2, 121.2, 120.5, 47.8, 33.2, 32.1, 31.3; HRMS (ESI) m/z calcd for C₁₉H₁₅N₃OS [M+H]⁺ 334.1009, found 334.1019.

5. References

- 1. A. Banerjee, P. Subramanian and K. P. Kaliappan, J. Org. Chem., 2016, 81, 10424.
- V. A. Mamedov, V. L. Mamedova, V. V. Syakaev, D. E. Korshin, G. Z. Khikmatova, E. V. Mironova, O. B. Bazanova, I. Kh. Rizvanov and S. K. Latypov, *Tetrahedron.*, 2017, 73, 5082.
- 3. Y. Liu, X.-L. Chen, X.-Y. Li, S.-S. Zhu, S.-J. Li, Y. Song, L.-B. Qu and B. Yu, *J. Am. Chem. Soc.*, 2021, **143**, 964.

6. Copies of the ¹H NMR and ¹³C NMR Spectra

¹H NMR (400M, CDCl₃) of **1b**

¹H NMR (400M, CDCl₃) of 1c

 $^1\!H$ NMR (400M, CDCl_3) of 1d

¹H NMR (400M, CDCl₃) of **1e**

¹³C NMR (101M, CDCl₃) of **1e**

¹H NMR (400M, CDCl₃) of **1g**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400M, CDCl₃) of **1s**

¹H NMR (400M, CDCl₃) of 3aa

¹H NMR (400M, CDCl₃) of **3ba**

¹H NMR (400M, CDCl₃) of **3ca**

¹H NMR (400M, CDCl₃) of **3da**

¹H NMR (400M, CDCl₃) of **3fa**

$\begin{array}{c} 161.25\\ 160.68\\ 150.68\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 138.63\\ 122.58\\ 1127.54\\ 1127.54\\ 1127.54\\ 1127.54\\ 1127.54\\ 1127.56\\ 1127.54\\ 1127.56\\ 1127.5$

 1 H NMR (400M, CDCl₃) of **3ga**

¹H NMR (400M, CDCl₃) of **3ha**

¹H NMR (400M, CDCl₃) of **3ia**

 $^{13}\text{C}\,\text{NMR}$ (101M, CDCl_3) of **3ia**

¹H NMR (400M, CDCl₃) of **3ja**

¹³C NMR (101M, CDCl₃) of **3ja**

¹H NMR (400M, CDCl₃) of **3ma**

$\begin{pmatrix} 162.10 \\ 161.90 \\ 133.23 \\ 135.54 \\ 135.54 \\ 135.13 \\ 135.03 \\ 135.03 \\ 135.03 \\ 127.65 \\ 127.18 \\ 1227.18 \\ 1227.21 \\ 1227.21 \\ 1227.21 \\ 1227.23 \\ 127.55 \\ 777.43 \\ 777.11 \\ 120.35 \\ 777.43 \\ 777.11 \\ 120.38 \\ 69.38 \end{pmatrix}$

¹H NMR (400M, CDCl₃) of **3na**

¹H NMR (400M, CDCl₃) of **30a**

¹H NMR (400M, CDCl₃) of **3qa**

¹H NMR (400M, CDCl₃) of 3ra

9.3707 9.3484 9.3415 9.3415 9.3415 8.4506 8.4419 8.4419 8.4419 8.4302 8.4312 7.8897 7.8897 7.8687	7.6384 7.6304 7.6304 7.5954 7.5954 7.5436 7.5284 7.4854 7.4854 7.4826	7.2867 7.2867 7.2816 7.2816 5.9962 5.9962 5.9767 5.9767 4.3260 4.3063 4.3063	4.2711 4.1293 4.1100 4.0953 4.0759 2.5981 2.5513	2.5310 2.3168 2.2965 2.2965 2.2659 2.2659 2.2659 2.1405 2.1405 2.1405

¹H NMR (400M, CDCl₃) of **3sa**

¹H NMR (400M, CDCl₃) of 3ta

¹H NMR (400M, CDCl₃) of **3va**

 ^1H NMR (400M, CDCl_3) of 3cc

¹H NMR (400M, CDCl₃) of **3ag**

