Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Redox-neutral zinc-catalyzed cascade [1,4]-H shift/annulation of diaziridines with donor-acceptor aziridines

1	General Information	S2
2	Crystal Structure and Data of 3am	S2-4
3	Optimization Studies	S4-5
4	General Procedure for the Preparation of Diaziridines	S5
5	General Procedure for the Preparation of DA Aziridines	S5
7	General Procedure for the Annulation of Diaziridines with DA Aziridines	S6
8	Procedure for the Preparation of 1-benzyl-4,5-dihydro-1H-pyrazole	S6
9	Scale-up Synthesis	S6
10	Procedure for the Post-Synthetic Modifications	S6-7
11	Procedure for the Preparation of 2h' and 3ah'	S7-8
12	HPLC Chromatograms of 2h, 2h', 3ah and 3ah'	S8-9
13	Characterization Data	S10-25
14	ADMET and Molecular Docking Studies of Compound 4	S26-29
15	References	S29-30
16	NMR (1 H, 13 C, 19 F) Spectra	S30-64

Table of Contents

General Information. Aldehydes, $Zn(OTf)_2$ ($\geq 98\%$), $Sc(OTf)_3$ (99%), $Yb(OTf)_3$ (>99%), Ni(OTf)₂ (>96%), Mg(OTf)₂ (98%), Ni(ClO₄)₂.6H₂O (98%), Pd(PPh₃)₄ (99%) and TEMPO (98%) were purchased from Aldrich and used as received. Methanol, dichloromethane, toluene and acetonitrile were dried prior as per the standard procedure. Diaziridines and DA aziridines were prepared according to the reported procedure.^{1,2} Merck silica gel G/GF254 plates were used for analytical TLC and Rankem silica gel (60-120 mesh) was utilized for column chromatography. NMR spectra were recorded with Bruker Avance III 600, 500 and 400 MHz instruments using CDCl₃ as solvent and Me₄Si as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (J) are reported in ppm and in Hz, respectively, and to describe peak patterns following abbreviations were used when appropriate: s = singlet, d = doublet, t =triplet and m = multiplet. MestReNova software was used throughout the spectral analysis. Melting points were determined using a Büchi B-540 apparatus. FT-IR spectra were collected on Perkin Elmer IR instrument. Q-Tof ESI-MS instrument was used for recording mass spectra (model: 6546 LC/Q-TOF). Optical rotation was determined using a Rudolph Autopol I Automatic Polarimeter. HPLC analysis was carried out using Waters-2489 with Daicel Chiralcel OJ-H and Daicel Chiralpak AD using iso-propanol and hexane as eluent. Single crystal X-ray data was collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/K α radiation and the structure was solved by direct method using SHELXT-2018/2 (Göttingen, Germany).

Sample Preparation for Crystal Growth. The compound **3am** was dissolved in minimum volume of acetonitrile and chloroform and kept at room temperature for slow evaporation (2 days). Needle shaped crystals were formed, which were then subjected to *X*-ray diffraction.

Crystal Structure and Data of 3am.

Figure S1. ORTEP diagram of Dimethyl 1-benzyl-6-phenyl-5-tosylhexahydro-4Himidazo[1,5-*b*]pyrazole-4,4-dicarboxylate **3am** (CCDC No 2293903) with 50% ellipsoid. H-Atoms are omitted for clarity.

CCDC No.	2293903
Identification code	3am
Empirical formula	$C_{29}H_{31}N_3O_6S$
Formula weight	549.63
Crystal habit, colour	Needle, Colourless
Temperature, T/K	297K
Wavelength, $\lambda/Å$	0.71073 Å
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	a = 8.2702(12) Å
	b = 12.5620(19) Å
	c = 13.769(2) Å
	$\alpha = 89.503(4)$
	β=79.822(4)
	$\gamma = 87.707)4)$
Volume, V/Å ³	1406.8(4) Å ³
Ζ	2

Calculated density, Mg·m ⁻³	1.298
Absorption coefficient, μ/mm^{-1}	0.162
F (000)	580
θ range for data collection	26.06
Limiting indices	$-9 \le h \le 9, -14 \le k \le 14, -16 \le 1 \le 16$
Reflection collected / unique	4913/3926
Completeness to θ	99.3 %
Absorption correction	Multi-scan
Refinement method	'SHELXL-2019/1 (Sheldrick, 2019)'
Data / restraints / parameters	4913/0/356
Goodness-of-fit on F^2	1.14
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0456, wR2 = 0.1126
R indices (all data)	R1 = 0.0621, wR2 = 0.1345

Table S1. Optimization of Reaction Conditions^a

Entry	Catalyst	Solvent	Yield (%) ^b
1	Sc(OTf) ₃	toluene	51
2	Zn(OTf) ₂	toluene	80
3	Ni(OTf) ₂	toluene	38
4	Yb(OTf) ₃	toluene	25
5	Mg(OTf) ₂	toluene	20
6	Ni(ClO ₄) ₂ .6H ₂ O	toluene	35
7	$Zn(OAc)_2$	toluene	42
8	ZnBr ₂	toluene	21
8	ZnCl ₂	toluene	30
10	Zn(OTf) ₂	THF	trace
11	Zn(OTf) ₂	CH ₃ CN	trace
12	Zn(OTf) ₂	МеОН	12
13	Zn(OTf) ₂	(CH ₂ Cl) ₂	32

14	Zn(OTf) ₂	DMSO	trace
15	PTSA	toluene	n.d.
16 ^d	Zn(OTf) ₂	toluene	39

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), catalyst (10 mol %), solvent (1 mL), rt, 10 h. ^{*b*}Isolated yield, ^{*c*}At 60 °C, n.d.= not detected.

General Procedure for the Preparation of Diaziridines.¹

To a solution of 1,3-diaminopropane (148 mg, 2 mmol) in MeOH (10 mL), 'BuOCl (118 mg, 1.1 mmol) in MeOH (1 mL) was added dropwise under stirring at 0 to 5 °C. Then, the aldehyde (1 mmol) in MeOH (2 mL) was added and the reaction was continued for 24 h at 0 to 5 °C under N₂ atmosphere. After completion of the reaction, the solvent was evaporated under vacuum and the residue was dissolved with $CHCl_3(10 \text{ mL})$. Then the solution was washed with water and dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified by using silica gel chromatography to afford the corresponding diaziridines.

General Procedure for the Preparation of DA Aziridines.²

Step-I: To the stirred solution of arylsulfonamide (3 mmol) and aldehyde (3.3 mmol) in toluene (10 mL), $BF_3 \cdot Et_2O$ (43 mg, 0.3 mmol) was added. The flask was equipped with a dean-stark trap, which was attached to a reflux condenser. The reaction mixture was stirred at 120 °C for 14 h under N₂ atmosphere. After completion of the reaction, the resulting reaction mixture was concentrated under vacuum to afford the corresponding imine.

Step-II: To a suspension of NaH (88 mg, 2.2 mmol, 60 % dispersion in mineral oil), 2bromomalonate (2.2 mmol) and imine solution (2 mmol) (obtained by **step-I**) were added in CH₃CN (20 mL) under N₂ atmosphere at 0 °C. The resulting mixture was stirred at room temperature for 30 minutes. After completion, the mixture was filtered through a short pad of silica gel using EtOAc (40 mL). Evaporation of the solvent gave a residue that was purified by silica gel chromatography to afford the corresponding aziridines. General Procedure for the Annulation of Diaziridines with DA Aziridines. Diaziridine 1 (0.1 mmol), DA aziridine 2 (0.12 mmol), $Zn(OTf)_2$ (3.62 mg, 0.01 mmol) and 4 Å molecular sieves (100 mg) were stirred in toluene (2 mL) at room temperature for 10 h. After completion, the reaction mixture was diluted with EtOAc (5 mL) and passed through a short pad of celite using EtOAc (10 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography to afford the corresponding annulated **3**.

Synthesis of 1-Benzyl-4,5-dihydro-1H-pyrazole II.³ To a stirred solution of diaziridine 1a (32 mg, 0.2 mmol) in toluene (3 mL), $Zn(OTf)_2$ (3.62 mg, 0.01 mmol) was added. The reaction was allowed to stir at room temperature for 8 h. Then, the suspension was diluted using EtOAc (5 mL) and passed through a short pad of celite using EtOAc (10 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography (hexane/ethyl acetate = 7:3) to afford II in 87% yield (28 mg).

Scale-up Synthesis of 3am. Diaziridine 1a (480 mg, 3 mmol), DA aziridine 2m (1.5 g, 3.6 mmol), $Zn(OTf)_2$ (108 mg, 0.3 mmol) and 4 Å molecular sieves (3 g) in toluene (10 mL) were stirred at room temperature for 12 h. Then, the reaction mixture was diluted with EtOAc (15 mL) and passed through a short pad of celite using EtOAc (20 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography (hexane/ethyl acetate = 4:1) to give 3am in 65% yield (1.07 g).

Procedures for the Post-Synthetic Modifications

Synthesis of 4⁴. To a stirred solution of **3am** (55 mg, 0.1mmol) in CH₃CN:H₂O (1:1, 4 mL), aqueous 2 M NaOH (0.2 mL) was added dropwise at 0 °C and then allowed to stir at room temperature for 1 h. After completion (monitored by TLC), the reaction mixture was acidified using 2 M HCl, and extracted using ethyl acetate (10 mL). The combined organic layer was dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified using silica gel chromatography (hexane/ethyl acetate = 7:3) to afford **4** in 72% (35 mg) yield.

Synthesis of 5. To a stirred solution of **3am** (55 mg, 0.1mmol) in THF (4 mL), LiAlH₄ (11 mg, 0.3 mmol) was added portion wise under N₂ flow over 5 min at 0 °C. Then, it was slowly warmed to room temperature and allowed to stir for 3 h. After completion (monitored by TLC), the reaction mixture was diluted with ethyl acetate (10 mL), washed with aqueous NH₄Cl. The combined organic layer was dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified using silica gel chromatography (hexane/ethyl acetate = 3:2) to afford **5** in 82% (40 mg) yield.

Synthesis of 6^5 . To a stirred solution of **3af** (55 mg, 0.1 mmol) in toluene:ethanol (1:1, 4 mL), Pd(PPh₃)₄ (4 mg, 0.003 mmol), phenylboronic acid (18 mg, 0.1 mmol), Na₂CO₃ (22 mg, 0.2 mmol) and H₂O (0.05 mL) were added and allowed to stir at 90 °C for 12 h under N₂ atmosphere. After completion (monitored by TLC), the reaction mixture was cooled to room temperature, diluted with ethyl acetate (10 mL), washed with water (5 mL) and dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified using silica gel chromatography (hexane/ethyl acetate = 4:1) to afford **6** in 78% (51 mg) yield.

Procedure for the Preparation of DA Aziridine 2h'.⁶

Step-I: Cu(OTf)₂ (72 mg, 0.2 mmol) and L (102 mg, 0.2 mmol) were stirred CH₂Cl₂ (8 ml) for 2 h at room temperature under nitrogen atmosphere. Then imine A (664 mg, 2.4 mmol) was added followed by the diethylmalonate B (320 mg, 2 mmol) and the resulting mixture was stirred for an additional 18 h at 0 °C under N₂ atmosphere. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and passed through a short pad of celite using CH₂Cl₂ (20 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography (hexane/ethyl acetate = 5:1) to afford *N*-Ts-β-amino ester C in 65% (328 mg) yield.

Step-II: To a stirred solution of C (217 mg, 0.5 mmol) (obtained by **step-I**) in CH₃CN (3 mL), PhI(OAc)₂ (322 mg, 1 mmol) and Bu₄NBr (322 mg, 1 mmol) were added and allowed to stir for 40 min at room temperature under N₂ atmosphere. The reaction mixture was diluted with EtOAc (10 mL) and passed through a short pad of celite using EtOAc (15 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography (hexane/ethyl acetate = 5:1) to furnish **2h'** in 40% (86 mg) yield.

Preparation of 3ah' using 2h'. Diaziridine **1** (16 mg, 0.1 mmol), DA aziridine **2h'** (52 mg, 0.12 mmol), Zn(OTf)₂ (3.62 mg, 0.01 mmol) and 4 Å molecular sieves (100 mg) were stirred

in toluene (2 mL) for 10 h at room temperature. The reaction mixture was diluted with EtOAc (5 mL) and passed through a short pad of celite using EtOAc (10 mL). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography to afford **3ah'** in 70% (42 mg) yield.

HPLC Chromatogram

Characterization Data of the Products

(R)-3-(4-fluorophenyl)-1-tosylaziridine-2,2-di-

carboxylate 2h'. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.43$; Colourless liquid; yield 40% (86 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.24 (m, 4H), 4.89 (s, 1H), 4.40-4.38 (q, J = 4.2 Hz, 2H), 3.95 (q, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H). [α]_D^{21.8} = -2.67 (c = 0.15, CH₂Cl₂); HPLC: 47% *ee* [CHIRALCEL OJ-H, hexane/PrOH = 70:30, flow rate: 1 mL/min, $\lambda = 254$ nm, t_R= 10.57 min (minor), 14.07 min (major)].

1-benzyl-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5-

b]pyrazole-4,4-dicarboxylate 3aa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; pale yellow thick liquid; yield 80% (46 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.14-7.13 (m, 5H), 7.10 (d, *J* = 7.2 Hz, 1H), 7.05-7.04 (m, 2H), 6.98 (t, *J* = 7.2 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 5.42 (s, 1H), 4.49-4.43 (m, 1H), 4.41-4.33 (m, 4H), 3.67 (d, *J* = 12.4 Hz, 1H), 3.38 (d, *J* = 12.8 Hz, 1H), 3.23-3.17 (m, 1H), 2.63-2.57 (m, 1H), 2.54-2.45 (m, 1H), 2.28 (s, 3H), 2.17-2.09 (d, *J* = 18.3 Hz, 1H), 1.42-1.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.3, 142.7, 138.0, 137.8, 137.1, 129.6, 129.2, 128.5, 128.4, 128.3, 128.1, 127.7, 127.1, 84.7, 76.1, 68.8, 63.0, 62.84, 62.80, 52.6, 28.3, 21.6, 14.2, 14.0; FT-IR (neat) 2982, 2929, 1750, 1456, 1344, 1263, 1158, 1090, 699, 581 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₆N₃O₆S: 578.2319; Found 578.2310.

Diethyl 1-(3-bromobenzyl)-6-phenyl-5-tosylhexahydro-4H-

imidazo[1,5-b]pyrazole-4,4-dicarboxylate 3ba. Analytical TLC on silica gel, 1:4 ethyl

acetate/hexane $R_f = 0.47$; thick liquid; yield 62% (41 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.27-7.26 (m, 3H), 7.22 (d, J = 7.8 Hz, 1H), 7.14 (s, 1H), 7.09-7.07 (m, 1H), 7.06 (d, J = 7.2 Hz, 2H), 6.95 (t, J = 7.8 Hz, 2H), 6.92-6.91 (m, 1H), 6.89 (d, J = 7.8 Hz, 2H), 5.34 (s, 1H), 4.49-4.44 (m, 1H), 4.41-4.36 (m, 4H), 3.57 (d, J = 12.6 Hz, 1H), 3.34 (d, J = 12.6 Hz, 1H), 3.30-3.26 (m, 1H), 2.65-2.61 (m, 1H), 2.55-2.41 (m, 1H), 2.28 (s, 3H), 2.21-2.16 (m, 1H), 1.43-1.38 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.2, 142.7, 140.4, 138.0, 136.9, 132.3, 130.2, 129.9, 129.7 129.6, 128.6, 128.4, 127.8, 127.7, 122.1, 84.7, 76.1, 68.4, 62.8, 62.6, 53.0, 31.4, 28.7, 21.5, 14.3, 14.1; FT-IR (neat) 2958, 2923, 1747, 1457, 1344, 1235, 1157, 1091, 646, 554 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₅BrN₃O₆S: 656.1424; Found 656.1441.

Diethyl 1-benzyl-6-(4-bromopheny l)-5-tosylhexahydro-4H-

imidazo[1,5-*b*]**pyrazole-4,4-dicarboxylate 3ca.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 70% (45 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.13-7.05 (m, 3H), 7.00-6.92 (m, 6H), 6.89 (d, J = 8.5 Hz, 2H), 5.25 (s, 1H), 4.49-4.43 (m, 1H), 4.41-4.31 (m, 4H), 3.55 (d, J = 12.5 Hz, 1H), 3.40 (d, J = 12.5 Hz, 1H), 3.31-3.26 (m, 1H), 2.69-2.64 (m, 1H), 2.54-2.47 (m, 1H), 2.33 (s, 3H), 2.19-2.13 (m, 1H), 1.42-1.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.1, 143.2, 137.9, 137.8, 136.1, 131.5, 130.6, 129.2, 128.6, 128.5, 128.0, 127.0, 122.6, 83.8, 75.9, 68.2, 63.1, 62.9, 62.8, 52.9, 28.8, 21.6, 14.3, 14.0; FT-IR (neat) 2962, 2929, 1746, 1456, 1344, 1263, 1158, 1091, 699, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₅BrN₃O₆S: 656.1424; Found 656.1426.

1-(4-chlorobenzyl)-6-phenyl-5-tosylhexahydro-4H-

imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3da. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 74% (47 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.14-7.13 (m, 4H), 7.10 (d, J = 7.6 Hz, 1H), 7.05-7.03 (m, 2H), 6.97 (t, J

= 7.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H), 4.47-4.43 (m, 1H), 4.40- 4.33 (m, 4H), 3.66 (d, J = 12.8 Hz, 1H), 3.38 (d, J = 12.8 Hz, 1H), 3.23-3.17 (m, 1H), 2.63-2.57 (m, 1H), 2.54-2.45 (m, 1H), 2.28 (s, 3H), 2.17-2.08 (m, 1H), 1.42-1.37 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.3, 142.7, 138.1, 137.9, 137.2, 129.7, 129.3, 128.6, 128.4, 128.3, 128.1, 127.7, 127.1, 84.8, 76.2, 68.8, 63.1, 62.8, 62.7, 52.7, 28.4, 21.5, 14.2, 14.0; FT-IR (neat) 2963, 2925, 1744, 1455, 1344, 1265, 1158, 1091, 700, 581 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for C₃₁H₃₄ClN₃O₆SNa: 634.1749; Found 634.1751.

P Diethyl 1-(4-fluorobenzyl)-6-phenyl-5-tosylhexa-hydro-4Himidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ea.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 66% (39 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 2H), 7.14-7.13 (m, 4H), 7.11-7.08 (m, 1H), 7.05-7.04 (m, 2H), 6.98 (t, J = 7.5 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 5.41 (s, 1H), 4.46-4.41 (m, 1H), 4.39-4.33 (m, 4H), 3.66 (d, J = 12.5 Hz, 1H), 3.37 (d, J = 12.5 Hz, 1H), 3.23-3.18 (m, 1H), 2.63-2.58 (m, 1H), 2.53-2.47 (m, 1H), 2.28 (s, 3H), 2.16-2.11 (m, 1H), 1.42-1.37 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.2, 142.7, 138.1, 137.9, 137.2, 131.5 ($J_{C-F} = 237.0$), 129.9, 129.7, 129.3, 128.8 ($J_{C-F} = 3.7$), 128.7, 128.6, 128.4, 128.3, 128.1, 127.7, 127.1, 84.8, 76.2, 68.8, 63.1, 62.8, 62.7, 52.7, 28.4, 21.5, 14.2, 14.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.22; FT-IR (neat) 2960, 2918, 1746, 1455, 1344, 1265, 1158, 1091, 700, 579 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₁H₃₅FN₃O₆S: 596.2225; Found 596.2238.

1-([1,1'-biphenyl]-4-ylmethyl)-6-phenyl-5-

tosylhexahydro-4H-imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3fa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 72% (47 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.43 (m, 4H), 7.37-7.33 (m, 3H), 7.13 (s, 4H), 7.10-7.09 (m, 3H), 7.05-

7.03 (m, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.43 (s, 1H), 4.51-4.44 (m, 1H), 4.42-4.34 (m, 4H), 3.68 (d, J = 12.5 Hz, 1H), 3.42 (d, J = 12.5 Hz, 1H), 3.29-3.24 (m, 1H), 2.68-2.63 (m, 1H), 2.58-2.51 (m, 1H), 2.20 (s, 3H), 2.17-2.13 (m, 1H), 1.43-1.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.2, 142.6, 141.3, 141.2, 138.2, 137.9, 136.1, 130.1, 129.3, 128.9, 128.6, 128.4, 128.0, 127.4, 127.2, 127.0, 126.4, 84.4, 76.1, 68.8, 63.1, 62.84, 62.80, 52.9, 28.5, 21.5, 14.3, 14.0; FT-IR (KBr) 2981, 2929, 1747, 1487, 1456, 1344, 1265, 1157, 1091, 698, 580 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₃₇H₄₀N₃O₆S: 654.2632; Found 654.2632.

Diethyl 1-(4-(tert-butyl)benzyl)-6-phenyl-5-tosylhexa-hydro-4H-

imidazo[1,5-*b*]**pyrazole-4,4-dicarboxylate 3ga.** Analytical TLC on silica gel, 1:3 ethyl acetate/hexane $R_f = 0.45$; yellow solid; mp 123-124 °C; yield 62% (39 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 7.13 (t, J = 7.8 Hz, 4H), 7.08 (t, J = 7.2 Hz, 1H), 6.97 -6.94 (m, 4H), 6.89 (d, J = 8.4 Hz, 2H), 5.40 (s, 1H), 4.46-4.42 (m, 1H), 4.40-4.34 (m, 4H), 3.61 (d, J = 12.6 Hz, 1H), 3.35 (d, J = 12.6 Hz, 1H), 3.24-3.20 (m, 1H), 2.63-2.59 (m, 1H), 2.51-2.45 (m, 1H), 2.28 (s, 3H), 2.17-2.13 (m, 1H), 1.42-1.37 (m, 6H), 1.26 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.3, 149.9, 142.6, 138.2, 137.3, 135.0, 129.8, 128.9, 128.6, 128.4, 128.3, 127.7, 125.0, 84.9, 76.2, 68.7, 62.8, 62.7, 52.8, 34.5, 31.5, 28.6, 21.5, 14.3, 14.0; FT-IR (neat) 2952, 2926, 1743, 1454, 1343, 1269, 1155, 1088, 699, 578 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₅H₄₄N₃O₆S: 634.2945; Found 634.2945.

Diethyl 6-phenyl-1-(thiophen-2-ylmethyl)-5-tosylhexahydro-4H-

imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3ia. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 65% (37 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 7.0 Hz, 2H), 7.13-7.06 (m, 2H), 7.02 (t, J = 7.5 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.82-6.81 (m, 1H), 6.71-6.70 (m, 1H), 5.39 (s, 1H), 4.46-4.34 (m, 4H),

4.22 (t, J = 7.5 Hz, 1H), 3.69-3.66 (m, 1H), 3.58-3.56 (m, 1H), 3.29-3.25 (m, 1H), 2.71-2.66 (m, 1H), 2.55-2.48 (m, 1H), 2.28 (s, 3H), 2.05-1.98 (m, 1H), 1.42-1.37 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.1, 142.7, 139.7, 138.1, 137.2, 130.0, 128.6, 128.5, 128.4, 127.8, 126.8, 126.1, 125.8, 85.1, 75.7, 68.7, 62.9, 62.7, 56.8, 52.0, 28.9, 21.5, 14.3, 14.1.; FT-IR (neat) 2981, 2924, 1743, 1456, 1343, 1265, 1157, 1089, 698, 579 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₉H₃₄N₃O₆S₂: 584.1884; Found 584.1896.

Diethyl 1-(naphthalen-1-ylmethyl)-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5-*b***] pyrazole-4,4-dicarboxylate 3ja.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; yellow solid; mp 126-127 °C; yield 75% (48 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.24-7.19 (m, 4H), 7.17-7.14 (m, 2H), 7.05-7.01 (m, 2H), 6.91 (d, J = 7.6 Hz, 2H), 5.37 (s, 1H), 4.52-4.35 (m, 5H), 4.17 (d, J = 12.0 Hz, 1H), 3.69 (d, J = 12.0 Hz, 1H), 3.11-3.05 (m, 1H), 2.79-2.73 (m, 1H), 2.53-2.45 (m, 1H), 2.28-2.23 (m, 4H), 1.43-1.36 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.3, 142.6, 138.0, 137.2, 133.7, 133.6, 132.2, 130.2, 129.6, 129.2, 128.54, 128.52, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 127.5, 125.7, 125.5, 125.1, 124.9, 84.4, 76.0, 67.8, 62.8, 62.7, 61.8, 52.2, 28.9, 21.5, 14.2, 14.0; FT-IR (neat) 2981, 2926, 1745, 1456, 1342, 1265, 1156, 1089, 670, 579 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for C₃₅H₃₇N₃O₆SNa: 650.2295; Found 650.2320.

Diethyl 1-(naphthalen-2-ylmethyl)-6-phenyl-5-tosylhexahydro-

4H-imidazo[1,5-*b***] pyrazole-4,4-dicarboxylate 3ka.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; thick liquid; yield 68% (42 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.65 (m, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.44-7.39 (m, 3H), 7.27 (s, 2H), 7.17 (d, J = 8.4 Hz, 1H), 7.07-7.05 (m, 2H), 6.97 (t, J = 7.2 Hz, 1H), 6.87-6.81 (m, 4H), 5.42 (s, 1H), 4.49-4.43 (m,

1H), 4.39-4.33 (m, 4H), 3.80 (d, J = 12.4 Hz, 1H), 3.54 (d, J = 12.4 Hz, 1H), 3.28-3.22 (m, 1H), 2.72-2.66 (m, 1H), 2.56-2.47 (m, 1H), 2.25 (s, 3H), 2.21-2.15 (m, 1H), 1.43-1.35 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.1, 142.5, 137.9, 136.9, 135.4, 133.1, 132.7, 129.5, 128.4, 128.3, 128.1, 127.8, 127.7, 127.6, 127.5, 127.48, 127.43, 125.7, 125.5, 84.7, 76.0, 68.6, 63.1, 62.7, 62.6, 52.7, 28.4, 21.4, 14.1, 13.9; FT-IR (neat) 2979, 2926, 1746, 1456, 1343, 1265, 1157, 1090, 670, 583 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₅H₃₈N₃O₆S: 628.2476; Found 628.2477.

Diethyl 6-phenyl-1-(pyren-4-ylmethyl)-5-tosylhexahydro-4Himidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3la. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; yellow solid; mp 124-125 °C; yield 57% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.6 Hz, 2H), 8.00-7.92 (m, 3H), 7.90-7.87 (m, 2H), 7.84-7.82 (m, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 7.2 Hz, 2H), 6.83 (d, J =8.0 Hz, 2H), 6.74-6.70 (m, 1H), 6.66-6.62 (m, 2H), 5.32 (s, 1H), 4.52-4.45 (m, 2H), 4.39-4.30 (m, 4H), 4.04 (d, J = 12.4 Hz, 1H), 3.25-3.19 (m, 1H), 2.91-2.85 (m, 1H), 2.57-2.49 (m, 1H), 2.34-2.28 (m, 1H), 2.23 (s, 3H), 1.40-1.35 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.7, 167.3, 142.6, 138.0, 136.7, 131.5, 131.3, 131.1, 131.0, 129.9, 129.8, 128.6, 128.5, 128.3, 128.0, 127.4, 127.2, 127.1, 126.9, 125.8, 125.0, 124.9, 124.8, 124.7, 124.6, 124.2, 84.6, 76.0, 67.9, 62.9, 62.7, 61.6, 52.8, 29.1, 21.5, 14.3, 14.0; FT-IR(neat) 2960, 2925, 1746, 1456, 1343, 1263, 1157, 1090, 670, 583 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₄₁H₄₀N₃O₆S: 702.2632; Found 702.2633.

Diethyl 1-((9H-fluoren-2-yl)methyl)-6-phenyl-5-tosylhexa-

hydro-4H-imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3ma. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 73% (48 mg); ¹H NMR (400 MHz, CDCl₃) δ (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 1H), 7.52-7.50 (m, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.31-7.27 (m, 2H), 7.24 (s, 1H), 7.16 (s, 1H), 7.08-7.02 (m, 3H), 6.97-6.93 (m, 1H), 6.88-6.84 (m, 4H), 5.41 (s, 1H), 4.50-4.43 (m, 1H), 4.40-4.34 (m, 4H), 3.72-3.67 (m, 3H), 3.46 (d, J =12.4 Hz, 1H), 3.30-3.24 (m, 1H), 2.72-2.66 (m, 1H), 2.55-2.42 (m, 1H), 2.25 (s, 3H), 2.21-2.14 (m, 1H), 1.43-1.36 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.3, 143.4, 143.1, 142.6, 141.7, 140.7, 138.1, 137.1, 136.6, 129.7, 128.5, 128.4, 128.1, 128.0, 127.5, 126.8, 126.6, 126.0, 125.1, 119.8, 119.3, 84.7, 76.2, 68.7, 63.2, 62.8, 62.7, 52.8, 36.8, 28.5, 21.5, 14.2, 14.1; FT-IR (neat) 2981, 2926, 1742, 1456, 1343, 1264, 1156, 1090, 697, 582 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₈H₄₀N₃O₆S: 666.2632; Found 666.2637.

Diethyl 6-phenyl-5-tosyl-1-(4-((((15,4S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl)oxy)carbonyl)benzyl) hexahydro-4H-imidazo[1,5-b] pyrazole-4,4dicarboxylate 3na. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.45$; thick liquid; yield 55% (41 mg); ¹H NMR (500 MHz, CDC13) δ 7.72-7.70 (m, 1H), 7.52-7.50 (m, 1H), 7.15-7.13 (m, 2H), 7.11-7.10 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 7.5 Hz, 3H), 6.89-6.85 (m, 2H), 6.35 (d, J = 9.0 Hz, 1H), 5.32 (s, 1H), 5.17-5.14 (m, 1H), 5.09-5.07 (m, 1H), 4.48-4.44 (m, 1H), 4.38-4.33 (m, 4H), 4.14-4.01 (m, 3H), 3.76-3.75 (m, 1H), 3.61 (d, J =13.0 Hz, 1H), 3.45 (d, J = 13.0 Hz, 1H), 3.34-3.29 (m, 1H), 2.69-2.64 (m, 1H), 2.52-2.43 (m, 1H), 2.32 (s, 3H), 2.26 (s, 2H), 2.22-2.17 (m, 1H), 2.11-2.04 (m, 1H), 1.74-1.73 (m, 1H), 1.421.36 (m, 6H), 1.20-1.18 (m, 2H), 1.15-1.12 (m, 2H), 0.97 (s, 1H), 0.92 (s, 1H), 0.90 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 167.9, 166.6, 143.0, 142.7, 138.1, 137.7, 129.8, 129.3, 129.1, 128.6, 128.5, 128.4, 127.8, 127.6, 127.1, 126.8, 84.7, 80.4, 76.0, 68.1, 62.8, 62.3, 62.0, 57.9, 57.1, 53.0, 49.2, 48.0, 45.1, 37.1, 28.9, 27.5, 21.5, 19.9, 19.1, 14.3, 14.0; FT-IR (neat) 2957, 2935, 1735, 1455, 1340, 1271, 1157, 1092, 668, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₄₂H₅₂N₃O₈S: 758.3470; Found 758.3488.

vl (3aR,6R)-6-phenyl-1-(4-((((R)-

2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl) chroman-6-yl)oxy)carbonyl)benzyl)-5-tosylhexahydro-4H-imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3oa. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.45$; thick liquid; yield 60% (61 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2H), 7.25 (s, 1H), 7.15-7.00 (m, 6H), 6.91-6.86 (m, 4H), 5.33 (s, 1H), 4.50-4.44 (m, 1H), 4.42-4.35 (m, 4H), 4.15-3.99 (m, 1H), 3.66 (d, J = 12.8Hz, 1H), 3.49 (d, J = 12.0 Hz, 1H), 3.40-3.34 (m, 1H), 2.74-2.68 (m, 1H), 2.62 (t, J = 6.0 Hz, 2H), 2.58-2.49 (m, 1H), 2.32 (s, 1H), 2.27-2.21 (m, 4H), 2.12 (s, 3H), 2.05-2.00 (m, 6H), 1.86-1.77 (m, 3H), 1.57-1.49 (m, 8H), 1.44-1.37 (m, 10H), 1.21-1.06 (m, 9H), 0.88-0.84 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.3, 165.2, 149.6, 143.9, 142.7, 140.8, 138.0, 136.9, 129.9, 129.8, 129.3, 129.2, 128.6, 128.5, 128.4, 128.3, 128.2, 127.6, 127.1, 127.0, 126.9, 125.2, 123.3, 117.6, 84.7, 76.0, 75.2, 68.0, 62.9, 62.8, 62.7, 53.2, 39.5, 37.6, 37.5, 37.4, 33.0, 32.9, 32.8, 29.8, 29.0, 28.1, 25.0, 24.9, 24.6, 22.9, 22.8, 21.5, 21.2, 20.8, 19.9, 19.8, 19.7, 14.3, 14.1, 13.2, 12.3, 12.0; FT-IR (neat) 2925, 2867, 1732, 1457, 1343, 1235, 1159, 1090, 667, 582 cm⁻ ¹; HRMS (ESI-TOF) *m*/z [M+H]⁺ calcd for C₆₁H₈₄N₃O₉S: 1034.5923; Found 1034.5924.

Diethyl 1-(4-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)-

oxy)carbonyl)benzyl)-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5-*b*] pyrazole-4,4dicarboxylate 3pa. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.45$; thick liquid; yield 68% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.24 (s, 2H), 7.02-6.99 (m, 5H), 6.89-6.85 (m, 4H), 5.32 (d, J = 2.8 Hz, 1H), 4.93-4.86 (m, 1H), 4.47-4.42 (m, 1H), 4.40-4.33 (m, 4H), 3.62-3.58 (m, 1H), 3.44 (d, J = 12.8 Hz, 1H), 3.34-3.28 (m, 1H), 2.68-2.62 (m, 1H), 2.55-2.46 (m, 1H), 2.26 (s, 3H), 2.22-2.15 (m, 1H), 2.13-2.07 (m, 1H), 1.97-1.91 (m, 1H), 1.74 (d, J = 11.2 Hz, 2H), 1.43-1.36 (m, 6H), 1.19-1.03 (m, 4H), 0.94-0.91 (m, 7H), 0.81-0.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.1, 166.0, 142.9, 142.6, 137.9, 136.7, 129.7, 129.1, 129.0, 128.9, 128.4, 128.3, 128.1, 127.4, 84.6, 75.9 74.6, 68.0, 62.8, 62.6, 52.9, 47.3, 41.0, 34.3, 31.5, 29.7, 28.8, 26.5, 23.6, 22.1, 21.4, 20.8, 16.5, 14.1, 13.9; FT-IR (neat) 2925, 2854, 1711, 1456, 1345, 1269, 1159, 1096, 696, 583 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₄₂H₅₄N₃O₈S: 760.3626; Found 760.3626.

Diethyl 1-benzyl-6-(3-bromophenyl)-5-tosylhexahydro-4Himidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ab.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 72% (49 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.06 (s, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.92-6.83 (m, 7H), 5.19 (s, 1H), 4.52-4.46 (m, 1H), 4.42-4.35 (m, 4H), 3.47 (d, J = 12.4 Hz, 1H), 3.38-3.31 (m, 2H), 2.73-2.67 (m, 1H), 2.56-2.47 (m, 1H), 2.30 (s, 3H), 2.27-2.19 (m, 1H), 1.42 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.1, 143.4, 140.2, 138.8, 137.5, 132.4, 132.2, 131.5, 130.3, 129.3, 128.9, 128.6, 128.5, 128.4, 127.8, 122.03, 122.00, 83.8, 75.9, 68.0, 63.0, 62.9, 62.5, 53.3, 29.0, 21.6, 14.3, 14.1; FT-IR (KBr) 2980, 2935, 1750, 1473, 1344, 1263, 1158, 1090, 670, 581 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₅BrN₃O₆S: 656.1424; Found 656.1424.

1-benzyl-6-(m-tolyl)-5-tosyl-hexahydro-4H-

imidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ac.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 65% (42 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, J = 7.8 Hz, 2H), 7.14-7.13 (m, 3H), 7.06-7.05 (m, 2H), 7.00 (d, J = 7.8 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.89-6.86 (m, 3H), 6.77 (s, 1H), 5.40 (s, 1H), 4.49-4.43 (m, 1H), 4.40-4.33 (m, 4H), 3.70 (d, J = 12.6 Hz, 1H), 3.37 (d, J = 12.6 Hz, 1H), 3.21-3.17 (m, 1H), 2.61-2.57 (m, 1H), 2.55-2.49 (m, 1H), 2.28 (s, 3H), 2.16-2.10 (m, 1H), 2.01 (s, 3H), 1.42-1.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.3, 142.5, 138.2, 137.9, 137.3, 136.8, 130.1, 129.2, 129.1, 128.5, 128.3, 128.0, 127.6, 127.1, 127.0, 84.7, 76.1, 69.1, 63.0, 62.8, 52.7, 28.0, 21.5, 21.2, 14.3, 14.0; FT-IR (KBr) 2960, 2924, 1747, 1454, 1344, 1263, 1157, 1092, 670, 580 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₃₂H₃₈N₃O₆S: 592.2476; Found 592.2504.

Diethyl 1-benzyl-5-tosyl-6-(3-(trifluoromethyl)phenyl)hexahydro-4H-imidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ad.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.45$; thick liquid; yield 70% (45 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 4H), 7.18 (s, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.05-7.00 (m, 3H), 6.93-6.91 (m, 2H), 6.88 (d, J = 8.4 Hz, 2H), 5.35 (s, 1H), 4.49-4.44 (m, 1H), 4.42-4.36 (m, 4H), 3.52 (d, J = 12.4 Hz, 1H), 3.39 (d, J = 12.4 Hz, 1H), 3.34-3.28 (m, 1H), 2.74-2.68 (m, 1H), 2.54-2.46 (m, 1H), 2.25 (s, 3H), 2.22-2.17 (m, 1H), 1.43-1.39 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.1, 143.3, 138.3, 137.7, 137.6, 133.3, 130.3 ($J_{C-F} = 32.1$), 130.1, 129.9, 129.7, 129.1, 128.6, 128.4, 128.0, 127.9, 127.1, 126.6 ($J_{C-F} = 270.7$), 126.54 ($J_{C-F} = 3.6$), 126.52, 126.5, 126.4, 125.2 ($J_{C-F} = 3.1$), 125.17, 125.15, 125.1, 124.8, 123.0, 121.2, 84.1, 76.1, 68.2, 63.2, 63.0, 62.9, 53.0, 29.0, 21.4, 14.2, 14.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.59; FT-IR(neat) 2985, 2929, 1749, 1454, 1329, 1268, 1161, 1093, 701, 580 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₃₂H₃₅F₃N₃O₆S: 646.2193; Found 646.2200.

Diethyl 1-(4-bromobenzyl)-6-phenyl-5-tosylhexa-hydro-4H-

imidazo[1,5-*b*]**pyrazole-4,4-dicarboxylate 3af.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 60% (39 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (s, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.09-7.08 (m, 1H), 6.99 (d, J = 7.5 Hz, 2H), 6.91 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 5.30 (s, 1H), 4.48- 4.41 (m, 1H), 4.39-4.32 (m, 4H), 3.51 (d, J = 12.5 Hz, 1H), 3.34-3.27 (m, 2H), 2.67-2.62 (m, 1H), 2.54-2.47 (m, 1H), 2.27 (s, 3H), 2.22-2.16 (m, 1H), 1.42-1.37 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.3, 142.7, 138.0, 137.0, 136.8, 131.0, 130.9, 129.8, 128.6, 128.4, 128.2, 127.6, 120.9, 84.7, 76.0, 68.2, 62.9, 62.8, 62.4, 53.0, 28.9, 21.5, 14.3, 14.0; FT-IR (neat) 2960, 2924, 1746, 1457, 1344, 1264, 1158, 1091, 670, 582 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₅BrN₃O₆S: 656.1424; Found 656.1423.

Diethyl 1-benzyl-6-(4-chlorophenyl)-5-tosylhexahydro-4Himidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ag.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 66% (40 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.13-7.05 (m, 3H), 6.96-6.92 (m, 6H), 6.85 (d, J = 8.5 Hz, 2H), 5.27 (s, 1H), 4.49-4.42 (m, 1H), 4.41-4.31 (m, 4H), 3.55 (d, J = 12.5 Hz, 1H), 3.39 (d, J = 13.0 Hz, 1H), 3.30-3.25 (m, 1H), 2.69-2.64 (m, 1H), 2.53-2.46 (m, 1H), 2.32 (s, 3H), 2.19-2.12 (m, 1H), 1.42-1.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.1, 143.1, 137.9, 137.8, 135.6, 134.3, 131.1, 129.2, 128.6, 128.5, 128.0, 127.7, 127.0, 83.8, 75.9, 68.2, 63.1, 62.9, 62.8, 52.9, 28.8, 21.5, 14.3, 14.0; FT-IR (neat) 2981, 2926, 1745, 1454, 1344, 1265 1157, 1088, 670, 579 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₅ClN₃O₆S: 612.1930; Found 612.1939.

Diethyl 1-benzyl-6-(4-fluorophenyl)-5-tosylhexahydro-4Himidazo[1,5-b]pyrazole-4,4-dicarboxylate 3ah. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 75% (44 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.4 Hz, 2H), 7.11-7.08 (m, 3H), 7.05-7.01 (m, 2H), 6.99-6.96 (m, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.59 (t, J = 8.8 Hz, 2H), 5.31 (s, 1H), 4.48-4.43 (m, 1H), 4.39-4.31 (m, 4H), 3.57 (d, J = 12.4 Hz, 1H), 3.39 (d, J = 12.4 Hz, 1H), 3.29-3.23 (m, 1H), 2.69-2.63 (m, 1H), 2.54-2.47 (m, 1H), 2.30 (s, 3H), 2.20-2.12 (m, 1H), 1.42-1.37 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.2, 144.2, 143.0, 138.1, 137.8, 132.9 ($J_{C-F} = 2.9$), 132.8, 131.6 ($J_{C-F} = 8.5$), 131.5, 129.8 ($J_{C-F} = 236.7$), 129.2, 128.6, 128.4, 128.0, 127.5, 127.1, 114.5 ($J_{C-F} = 21.4$), 114.3, 83.8, 75.9, 68.2, 63.1, 62.9, 62.8, 52.8, 28.8, 21.5, 14.3, 14.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.21; FT-IR (KBr) 2982, 2926, 1743, 1454, 1343, 1225, 1158, 1093, 671, 579 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd C₃₁H₃₅FN₃O₆S: 596.2225; Found 596.2227.

Diethyl 1-benzyl-6-(4-(methoxycarbonyl)phenyl)-5-tosylhexahydro-4H-imidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ai.** Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.47$; colorless solid; mp 123-124 °C; yield 76% (48 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.5Hz, 2H), 7.09-7.04 (m, 3H), 6.97-6.96 (m, 2H), 6.87 (d, J = 8.0 Hz, 2H), 5.36 (s, 1H), 4.48-4.43 (m, 1H), 4.39-4.34 (m, 4H), 3.91 (s, 3H), 3.56 (d, J = 12.5 Hz, 1H), 3.37 (d, J = 12.5 Hz, 1H), 3.28-3.23 (m, 1H), 2.68-2.63 (m, 1H), 2.53-2.41 (m, 1H), 2.26 (s, 3H), 2.20-2.13 (m, 1H), 1.42-1.38 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.0, 143.2, 142.3, 137.74, 137.71, 129.9, 129.7, 129.2, 128.8, 128.6, 128.5, 128.0, 127.1, 84.1, 76.1, 68.5, 63.2, 62.9, 62.8, 52.8, 52.2, 28.7, 21.4, 14.2, 14.0; FT-IR (KBr) 2982, 2954, 1745, 1721, 1436, 1344, 1273, 1158, 1020, 668, 580 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₃H₃₈N₃O₆S: 636.2374; Found 636.2379.

Diethyl 1-benzyl-6-(naphthalen-2-yl)-5-tosylhexahydro-4H-

imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3aj. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; thick liquid; yield 58% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 3H), 7.53-7.50 (m, 2H), 7.40-7.36 (m, 2H), 7.34-7.31 (m, 2H), 7.19 (d, J = 8.4 Hz,

2H), 7.06 (d, J = 10.0 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 10.0 Hz, 1H), 6.50 (d, J = 8.4 Hz, 2H), 5.48 (s, 1H), 4.54-4.48 (m, 1H), 4.45-4.37 (m, 4H), 3.74 (d, J = 12.8 Hz, 1H), 3.56 (d, J = 12.4 Hz, 1H), 3.39-3.33 (m, 1H), 2.79-2.73 (m, 1H), 2.64-2.56 (m, 1H), 2.32-2.17 (m, 1H), 2.02 (s, 3H), 1.45-1.40 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.3, 142.6, 137.7, 135.4, 134.1, 133.5, 133.0, 132.6, 132.5, 129.6, 128.5, 128.0, 127.9, 127.6, 127.5, 127.4, 127.3, 127.2, 126.3, 126.1, 125.7, 125.6, 125.5, 84.7, 76.0, 68.5, 63.3, 62.9, 62.8, 53.1, 28.7, 21.2, 14.3, 14.1; FT-IR (KBr) 2963, 2926, 1745, 1456, 1342, 1263, 1158, 1090, 667, 583 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₅H₃₈N₃O₆S: 628.2476; Found 628.2477.

Diethyl 1-benzyl-6-phenyl-5-(phenylsulfonyl)hexa-hydro-4Himidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 3ak.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; orange solid; mp 99-100 °C; yield 68% (38 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.6 Hz, 2H), 7.30-7.28 (m, 1H), 7.14-7.05 (m, 10H), 6.98-6.94 (m, 2H), 5.44 (s, 1H), 4.49-4.43 (m, 1H), 4.39-4.34 (m, 4H), 3.67 (d, J = 12.4 Hz, 1H), 3.38 (d, J = 12.4 Hz, 1H), 3.23-3.17 (m, 1H), 2.64-2.58 (m, 1H), 2.55-2.47 (m, 1H), 2.18-2.09 (m, 1H), 1.43-1.37 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.2, 141.1, 137.9, 137.0, 131.9, 129.7, 129.2, 128.5, 128.4, 128.1, 127.8, 127.7, 127.1, 84.8, 76.2, 68.9, 63.1, 62.8, 62.7, 52.6, 28.4, 14.2, 14.0; FT-IR (neat) 2981, 2950, 1743, 1448, 1346, 1265, 1159, 1089, 687, 588 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₃₀H₃₄N₃O₆S: 564.2163; Found 564.2153.

hydro-4H-imidazo[1,5-*b*]pyrazole-4,4-dicarboxylate 3al. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 73% (43 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.13-7.11 (m, 6H), 7.05-7.02 (m, 4H), 6.99 (t, J = 7.2 Hz, 2H), 5.42 (s, 1H), 4.48-4.42 (m, 1H), 4.39- 4.33 (m, 4H), 3.64 (d, J = 13.2 Hz, 1H), 3.38 (d, J = 12.6 Hz,

1H), 3.24-3.20 (m, 1H), 2.65-2.61 (m, 1H), 2.54-2.48 (m, 1H), 2.17-2.11(m, 1H), 1.42-1.38 (m, 6H); 13 C NMR (150 MHz, CDCl₃) δ 168.5, 167.1, 139.6, 138.5, 137.8, 136.8, 130.1, 129.8, 129.2, 128.6, 128.1, 128.0, 127.9, 127.2, 84.8, 76.2, 68.8, 63.1, 62.9, 62.8, 52.7, 28.5, 14.3, 14.0; FT-IR (KBr) 2981, 2955, 1746, 1477, 1348, 1266, 1162, 1089, 699, 566 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₀H₃₃ClN₃O₆S: 598.1773; Found 598.1802.

Dimethyl 1-benzyl-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5-

b]pyrazole-4,4-dicarboxylate 3am. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.45; colorless solid; mp 123-124 °C; yield 85% (46 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 2H), 7.15-7.13 (m, 5H), 7.11-7.09 (m, 1H), 7.06-7.05 (m, 2H), 7.01-6.97 (m, 2H), 6.90 (d, J = 8.0 Hz, 2H), 5.45 (s, 1H), 4.36 (t, J = 6.4 Hz, 1H), 3.93 (d, J = 12.4 Hz, 6H), 3.70 (d, J = 12.8 Hz, 1H), 3.36 (d, J = 1.4 Hz, 1H), 3.19-3.13 (m, 1H), 2.61-2.55 (m, 1H), 2.53-2.45 (m, 1H), 2.28 (s, 3H), 2.16-2.08 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.1, 167.7, 142.8, 138.0, 137.8, 137.1, 129.6, 129.2, 128.5, 128.4, 128.3, 128.1, 127.8, 127.2, 84.8, 76.1, 69.2, 63.0, 53.6, 53.4, 52.6, 28.1, 21.5; FT-IR (KBr) 3030, 2952, 1748, 1454, 1344, 1272, 1157, 1089, 700, 580 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₉H₃₂N₃O₆S: 550.2006; Found 550.2004.

Di-*iso*-**propyl 1-benzyl-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5***b*]**pyrazole-4,4-dicarboxylate 3an.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.45; thick liquid; yield 70% (42 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.13-7.10 (m, 5H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.03-7.02 (m, 2H), 6.97 (t, *J* = 7.5 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.35 (s, 1H), 5.28-5.19 (m, 2H), 4.34 (t, *J* = 7.0 Hz, 1H), 3.63 (d, *J* = 12.5 Hz, 1H), 3.37 (d, *J* = 12.5 Hz, 1H), 3.26-3.21 (m, 1H), 2.63-2.58 (m, 1H), 2.50-2.43 (m, 1H), 2.28 (s, 3H), 2.14-2.08 (m, 1H), 1.40-1.36 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 166.6, 142.5, 138.1, 137.9, 137.2, 129.7, 129.1, 128.5, 128.3, 128.1, 127.9, 127.4, 126.9, 84.7, 76.2, 70.9, 70.4, 68.3, 63.1, 52.6, 28.6, 21.8, 21.7, 21.63, 21.60, 21.4; FT-IR (KBr) 2983, 2925, 1741, 1454, 1345, 1277, 1159, 1089, 699, 577 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₃H₄₀N₃O₆S: 606.2632; Found 606.2632.

Di*tert***-butyl 1-benzyl-6-phenyl-5-tosylhexahydro-4H-imidazo[1,5***b*]**pyrazole-4,4-dicarboxylate 3ao.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.45; thick liquid; yield 65% (41 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.14-7.13 (d, *J* = 7.2 Hz, 5H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.04-7.03 (m, 2H), 6.98 (t, *J* = 7.6 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 5.28 (s, 1H), 4.33 (t, *J* = 6.8 Hz, 1H), 3.64 (d, *J* = 12.8 Hz, 1H), 3.40 (d, *J* = 12.4 Hz, 1H), 3.26-3.20 (m, 1H), 2.64-2.58 (m, 1H), 2.47-2.39 (m, 1H), 2.29 (s, 3H), 2.13-2.05 (m, 1H), 1.59-1.58 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 165.9, 142.3, 138.2, 137.9, 137.5, 129.6, 129.3, 128.5, 128.4, 128.0, 127.9, 127.4, 126.9, 84.8, 83.8, 83.0, 68.6, 63.2, 52.5, 28.4, 28.0, 27.9, 21.4; FT-IR (KBr) 2975, 2926, 1742, 1455, 1345, 1250, 1154, 1089, 699, 584 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₃₅H₄₄N₃O₆S: 634.2945; Found 634.2948.

Methyl1-benzyl-6-phenyl-5-tosylhexahydro-1H-imidazo[1,5-*b*]pyrazole-4-carboxylate 4. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.49$;colorless solid; yield 72% (35 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H),7.54 (d, J = 7.2 Hz, 2H), 7.29-7.27 (m, 4H), 7.25-7.23 (m, 4H), 7.16-7.14 (m, 2H), 5.94 (s,1H), 4.26 (d, J = 7.2 Hz, 1H), 4.12 (d, J = 12.4 Hz, 1H), 3.85 (t, J = 8.0 Hz, 1H), 3.72 (s, 3H),3.54 (d, J = 12.8 Hz, 1H), 2.82-2.76 (m, 1H), 2.52-2.46 (m, 1H), 2.43 (s, 3H), 2.24-2.17 (m,1H), 2.05-1.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 143.9, 139.1, 138.1, 135.6,129.6, 129.2, 128.4, 128.3, 128.2, 128.1, 127.6, 127.4, 86.5, 67.4, 66.1, 63.3, 52.7, 51.1, 28.8,21.8; FT-IR (neat) 2953, 2925, 1748, 1454, 1344, 1265, 1157, 1089, 701, 580 cm⁻¹; HRMS(ESI-TOF) m/z [M+H]⁺ calcd for C₂₇H₃₀N₃O₄S: 492.1952; Found 492.1966.

(1-benzyl-6-phenyl-5-tosylhexahydro-1H-imidazo[1,5-b]pyrazole-

4,4-diyl)dimethanol 5. Analytical TLC on silica gel, 2:3 ethyl acetate/hexane $R_f = 0.49$; thick

liquid; yield 82% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.35 (m, 2H), 7.20-7.19 (m, 6H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.99-6.98 (m, 2H), 5.58 (s, 1H), 4.09-3.99 (m, 3H), 3.91-3.85 (m, 3H), 3.43 (d, *J* = 12.4 Hz, 1H), 3.13-3.08 (m, 1H), 2.85 (s, 1H), 2.51-2.44 (m, 1H), 2.37 (s, 3H), 2.11-2.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 138.9, 137.7, 136.6, 129.3, 129.1, 128.6, 128.4, 128.2, 127.8, 127.7, 83.2, 74.5, 66.9, 66.5, 62.4, 61.2, 53.7, 24.7, 21.6; FT-IR (neat) 3368, 3031, 2924, 1453, 1373, 1289, 1121, 1090, 738, 571 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₇H₃₂N₃O₄S: 494.2108; Found 494.2107.

N-N

Diethyl 6-([1,1'-biphenyl]-4-yl)-1-benzyl-5-tosylhexahydro-4H-imidazo[1,5-*b***]pyrazole-4,4-dicarboxylate 6.** Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.47$; thick liquid; yield 78% (51 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.24-7.22 (m, 3H), 7.21-7.18 (m, 2H), 7.02-6.96 (m, 5H), 6.85 (t, J = 7.6 Hz, 2H), 6.80 (d, J = 8.0 Hz, 2H), 5.32 (s, 1H), 4.40-4.35 (m, 1H), 4.33-4.25 (m, 4H), 3.58 (d, J = 12.8 Hz, 1H), 3.35 (d, J = 12.4 Hz, 1H), 3.24-3.18 (m, 1H), 2.63-2.56 (m, 1H), 2.48-2.39 (m, 1H), 2.18 (s, 3H), 2.15-2.07 (m, 1H), 1.35-1.28 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 167.3, 142.7, 141.1, 139.9, 138.1, 137.1, 137.0, 129.8, 129.6, 128.8, 128.6, 128.4, 128.2, 127.6, 127.2, 127.1, 126.7, 84.8, 76.1, 68.6, 62.8, 62.77, 62.75, 52.9, 28.6, 21.5, 14.3, 14.1; FT-IR (neat) 2963, 2924, 1745, 1454, 1343, 1264, 1157, 1093, 699, 579 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₃₇H₄₀N₃O₆S: 654.2632; Found 654.2629.

I-benzyl-4,5-dihydro-1H-pyrazole II. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.49$; thick liquid; yield 87% (28 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.37 (m, 2H), 7.35-7.32 (m, 2H), 7.29-7.27 (m, 1H), 6.82 (s, 1H), 4.21 (s, 2H), 2.92 (t, J = 9.6 Hz, 2H), 2.66-2.61 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 143.5, 137.7, 129.1, 128.5, 127.4, 60.8, 52.3, 34.3; FT-IR (neat) 2923, 2823, 1454, 840, 734, 698 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₁₀H₁₃N₂: 161.1073; Found 161.1073.

ADMET and Molecular Docking Studies

The ADMET (adsorption, distribution, metabolism, excretion, and toxicity) properties were examined to study the drug likeness and physicochemical property of all the synthesized compounds using pkCSM tool,^{7e} among which compound **4** satisfies the Lipinski's rule and Veber rule (Table S2).^{7a,b} The analysis revealed that the gastrointestinal tract (GIT) absorption value for **4** is 98.021, which infers that the corresponding compound may show good absorbance in human intestine. Accounting metabolism, compound **4** was examined for inhibition of the Cytochrome P450 isomers, such as CYP3A4, CYP2D6, CYP2C9, CYP1A2 and CYP2C19 where it emerged as inhibitor of CYP3A4, the key enzyme responsible for drug metabolism. Moreover, compound **4** is not a OCT2 substrate and has good clearance rate compared to Fluconazole, hence it might have shorter dose interval period. Eventually, the final examined factor *i.e.* toxicity was documented in Table S2 where compound **4** has maximum tolerable dose. Also, the Chronic toxic activity (LOAEL) was less, however, the acute toxic activity (LD50) is nearly same with Fluconazole. The aforementioned data suggests that the synthesized **4** has good medicinal implication.

Parameter	Compound 4	Fluconazole
Absorption		
Water solubiliy (log mol/L)	-5.763	-2.411
Caco2 permeability (log Papp in 10 ⁻⁶ cm/s)	1.272	0.754
GIT absorption ^{<i>a</i>} (%)	98.021	72.188
Inhibitor of <i>p</i> -glycoprotien II	Yes	No
Inhibitor of <i>p</i> -glycoprotien I	Yes	No
Substrate for <i>p</i> -glycoprotien	No	No
Skin Permeability (log Kp)	-2.711	-2.736
Distribution		
BBB permeability ^b (log BB)	-0.820	-0.706
CNS permeability ^c (log PS)	-2.175	-3.785
VDss (human) ^d (log L/kg)	-0.071	0.438

Table S2. ADMET Properties of Compound 4.

Metabolism			
CYP3A4 substrate	Yes	No	
CYP2D6 substrate	No	No	
CYP2C9 inhibitor	Yes	No	
CYP1A2 inhibitor	No	No	
CYP2C19 inhibitor	Yes	No	
Excretion			
Renal OCT2 substrate ^e	No	No	
Total clearance (log ml/min/kg)	0.960	0.851	
Toxicity	N	N	
Skin sensitization	No	No	
Hepatotoxic effect	Yes	Yes	
Oral rat chronic toxicity (LOAEL)	1.334	1.281	
(log mg/kg_bw/day)			
Oral rat acute toxicity (LD50) (mol/kg)	2.332	2.321	
hERG II inhibitor	No	No	
hERG I inhibitor	No	No	
Max. Tolerated dose (log mg/kg/day)	0.458	0.608	
AMES toxicity	No	No	

^{*a*}Gastro intestinal tract; ^{*b*}blood brain barrier permeant; ^{*c*}central nervous system permeant; ^{*d*}VDss: volume of distribution; ^{*e*}Renal organic cation transporter 2.

Here we exhibit the best docking pose of **4** and compare it with standard ligand Fluconazole to study antifungal activity of synthesized moiety. Here the interactions between **4** and amino acid residues of target protein lanosterol 14α -demethylase (**CYP51**) (PDB ID: 4WMZ)^{7d} was unveiled using AutoDock Suite.^{7c} The results revealed that the binding energy/docking score of docked **4** with target protein is -7.46 kcal/mol while for Fluconazole the corresponding energy/ score is -4.27 kcal/mol. Again, H-bonding interactions was found between **4** and nearby residues, such as TYR140, GLY314, GLY315 while Fluconazole forms H-bonding with LYS151, HIS468, ILE471, GLY472 amino acid residues of target protein **CYP51** (Figure S2).

(a)

2D Interaction diagram of Fluconazole		3D Interaction diagram of Fluconazole	
HIS 468 LEU 147 LEU 147		GLY 472 ILE 471 LYS 151	
Inhibitors	Docking Score	Hydrogen Bond	Hydrophobic
	(kcal/mol)	interactions	Interactions
Fluconazole	-4.27 kcal/mol	LYS151, HIS468,	ILE135, LEU147,
		ILE471, GLY472	LYS151

Figure S2. The Result of Docking Experiment. Schematic representations of binding mode of Fluconazole (a) and compound 4 (b) with target enzyme CYP51 (blue bonds showing H-bond interactions and dotted white bonds showing hydrophobic interactions with the binding site residues) (C) Best docking pose of compound 4 (green) and comparison with the initial ligand Fluconazole (yellow) with CYP51 pocket.

References

- For preparation of diaziridines, see: (a) V. V. Kuznetsov, S. A. Kutepov, N. N. Makhova, K. A. Lyssenko and D. E. Dmitriev, *Russ. Chem. Bull.*, 2003, **52**, 665; (b) Y. B. Koptelov, *Russ. J. Org. Chem.*, 2006, **42**, 1510; (c) Y. B. Koptelov, S. P. Saik, A. P. Molchanov and S. I. Selivanov, *Russ. J. Org. Chem.*, 2011, **47**, 421; (d) A. W. Beebe, E. F. Dohmeier and G. Moura-Letts, *Chem. Commun.*, 2015, **51**, 13511; (e) S. Arora, V. Palani and T. R. Hoye, *Org. Lett.*, 2018, **20**, 8082; (f) A. O. Chagarovskiy, V. S. Vasin, V. V. Kuznetsov, O. A. Ivanova, V. B. Rybakov, A. N. Shumsky, N. N. Makhova and I. V. Trushkov, *Angew. Chem. Int. Ed.*, 2018, **57**, 10338; (g) J. Cao, G. Wang, L. Gao, X. Cheng and S. Li, *Chem. Sci.*, 2018, **9**, 3664; (h) Y. Wang, J. Zhu, A. C. Durham, H. Lindberg and Y.-M. Wang, *J. Am. Chem. Soc.*, 2019, **141**, 19594; (i) L. Gao, X. Liu, G. Li, S. Chen, J. Cao, G. Wang and S. Li, *Org. Lett.*, 2022, **24**, 5698; (j) M. Mishra, P. K. Maharana, P. Karjee and T. Punniyamurthy, *Chem. Commun.*, 2022, **58**, 7090.
- For preparation of DA aziridines, see: (a) R. Fan and Y. Ye, *Adv. Synth. Catal.*, 2008, **350**, 1526; (b) X. Wu, L. Li and J. Zhang, *Adv. Synth. Catal.*, 2012, **354**, 3485; (c) Y. Liao, X. Liu, Y. Zhang, Y. Xu, Y. Xia, L. Lin and X. Feng, *Chem. Sci.*, 2016, **7**, 3775.
- T. A. Kornilova, R. R. Kostikov, A. F. Khlebnikov and I. G. Zenkevich, J. Phys. Org. Chem., DOI:10.1002/poc.3843.
- 4) A. Jacob, P. G. Jones and D. B. Werz, Org. Chem. Front., 2022, 9, 6933.
- 5) M. Prieto, E. Zurita, E. Rosa, L. Muñoz, P. Lloyd-Williams and E. Giralt, J. Org. Chem., 2004, 69, 6812.

- 6) (a) M. Marigo, A. Kjærsgaard, K. Juhl, N. Gathergood and K. A. Jørgensen, Chem. Eur. J., 2003, 9, 2359; (b) S. Zhang, P. Deng, J. Zhou, M. Liu, G. Liang, Y. Xiong and H. Zhou, Chem. Commun., 2017, 53, 12914; (c) M. Buchsteiner, L. Martinez-Rodriguez, P. Jerabek, I. Pozo, M. Patzer, N. Nöthling, C. W. Lehmann and A. Fürstner, Chem. Eur. J., 2020, 26, 2509.
- 7) C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Adv. Drug Deliv. Rev., 2001, 46, 3; (b) D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, J. Med. Chem., 2002, 45, 2615; (c) G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, J. Comput. Chem., 2009, 30, 2785; (d) A. A. Sagatova, M. V. Keniya, R. K. Wilson, B. C. Monk and J. D. A. Tyndall, Antimicrob. Agents Chemother., 2015, 59, 4982; (e) D. E. V. Pires, T. L. Blundell and D. B. Ascher, J. Med. Chem., 2015, 58, 4066.

NMR (¹H, ¹³C and ¹⁹F) Spectra

10.0 9.5 9.0 8.5 8.0 7.0 6.5

3.5 3.0 2.0

0.5 0.0

S31

S36

√168.586 √168.586 √157.282 √127.232 √127.717 √127.717 √127.129.138 √128.531 √128.541 √128.541 √128.541 √128.541 √128.541 √128.541 √128.541 √128.541 √128.541 √128.541 √138.541 √138.541 √138.551 √138.551 √138.541 √138.551 √138.541 √138.541 √138.541 √138.541 √138.541 √138.541 √138.541 √138.541 √14.255 √13.541 √13.541 √13.541 √13.541 √14.255 √13.541 √13.541 √13.541 √13.541 √14.255 √13.541 √13.541 √13.541 √14.255 √13.541 √14.255 √14.255 √14.255 √14.255 √14.255 √14.255 √14.255 √14.255 √14.255 √14.255

0 -100 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

S52

