Supporting Information

Heterostructured ZnFe₂O₄@Ni₃S₂ nanosheet arrays on Ni foam as an efficient

oxygen evolution catalyst

Haiqing Liu, ^a Juhong Miao, ^{*a} Yubin Wang, ^a Siyu Chen, ^a Yujia Tang ^a and Dongdong Zhu^{*a}

^a School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
E-mail: miaojh_2008@163.com, dd.zhu@nuist.edu.cn

1. Experimental Section

1.1 Materials

Zinc(II) acetate anhydrous (Zn(CH₃COO)₂), iron(III) nitrate nonahydrate (Fe(NO)₃·9H₂O), thiourea (CH₄N₂S) and ammonium fluoride (NH₄F) were purchased from Sinpharm Chemical Reagent Co. Ltd, China. Urea (H₂NCONH₂) and Nickel(II) chloride hexahydrate (NiCl₂·6H₂O) were obtained from Aladdin Reagent Co. Ltd. Suzhou Sinero Technology Co., Ltd provided Nickel foam and RuO₂.

1.2 Synthesis of ZnFe₂O₄/NF

The successful growth of ZnFe₂O₄ nanosheets on nickel foam was synthesized by a typical hydrothermal method. Firstly, the nickel foam (2 cm × 4 cm) was ultrasonically cleaned with 3 M HCl and anhydrous ethanol for 10 min to remove surface oxides and oils. Then, 0.5 mmol of Zn(CH₃COO)₂, 1 mmol of Fe(NO)₃·9H₂O, 0.37 g of NH₄F, and 0.72 g of urea were dissolved in 30 mL of deionized water and stirred in an ultrasonic bath until a homogeneous clear solution was formed. The mixed solution and the pre-cleaned nickel foam substrate were transferred to a 50 mL sealed Teflon autoclave and reacted at 140 °C for 4 hours. The resulted Zn-Fe precursor/NF and precursor powder were rinsed with water and ethanol, respectively, and dried in an oven at 60 °C overnight. The above Zn-Fe precursor/NF and precursor powder were heated to 350 °C in a muffle furnace exposed to air and calcined for 2 h at a heating rate of 3 °C·min⁻¹ to obtain ZnFe₂O₄/NF and ZnFe₂O₄ powder.

1.3 Synthesis of ZnFe₂O₄@Ni₃S₂/NF

ZnFe₂O₄@Ni₃S₂/NF was synthesized by an electrochemical deposition process in a simple three-electrode electrochemical system. The prepared ZnFe₂O₄/NF (1 × 2 cm⁻²), platinum foil (1 × 1 cm⁻²) and saturated Ag/AgCl were used as the working electrode, counter electrode, and reference electrode, respectively. The electrodeposition solution was obtained by dissolving 2 mmol NiCl₂·6H₂O and 40 mmol CH₄N₂S in 50 mL of deionized water and mixed thoroughly. Ni₃S₂ nanosheets were electrochemically deposited on the ZnFe₂O₄ nanosheets surface using cyclic voltammetry with a potential range of -1.2 to 0.2 V, a scan rate of 5 mV s⁻¹, and different electrodeposition cycles of 5, 10, 20 and 30. The resulted ZnFe₂O₄@Ni₃S₂/NF electrodes were washed several times with water and dried at 60 °C for 12 h.

1.4 Synthesis of Ni₃S₂/NF

For comparison purpose, Ni_3S_2 was prepared using the same electrodeposition procedure on pre-cleaned unmodified nickel foam electrodes.

1.5 Synthesis of RuO₂/NF

The RuO₂ catalyst (20 mg) was first dispersed in a mixed solution with 1 mL of deionized water, 0.8 mL of anhydrous ethanol and 0.2 mL of 5 wt % Nafion solution. A homogeneous ink was formed after sonication for 30 min. Then, the prepared catalyst ink was dropped on a clean NF (1×1 cm⁻²).

1.6 Characterization

All prepared electrodes were characterized via morphology, composition, and electrochemical tests. The structure of the prepared electrodes was characterized by X-ray powder diffraction (XRD) technology using a powder X-ray diffractometer (Bruker Rigaku-Dmax 2500) with CuK α radiation ($\lambda = 0.15418$ nm) in the range from 5° to 80°. The microscopic morphology and dimension of the samples were obtained on field emission scanning electron microscopy (FE-SEM, ZEISS GeminiSEM 300) and field emission transmission electron microscope (TEM, FEI Tecnai G2 F30), respectively. X-ray photoelectron spectroscopy (XPS) was employed to measure the chemical state of the products at an ESCALABMK II x-ray photoelectron spectrometer with Mg as the excitation source.

1.7 Electrochemical characterization

The electrochemical performance was tested using a CHI 660E electrochemical workstation (Chenhua, Shanghai, China) and a three-electrode system. The working electrode was a prepared nickel foam composite electrode (1 × 1 cm⁻²), the reference electrode was a Hg/HgO (1 M KOH) electrode, and the counting electrode was a graphite rod electrode. All electrochemical tests were carried out in an electrolyte of 1 M KOH at room temperature and the potential values tested were calibrated according to the reversible hydrogen electrode E (RHE) = E (Hg/HgO) + 0.059pH + 0.098. After activation with a least of 100 turns of cyclic voltammetry (CV) scanning performed, cyclic voltammetry (CV), Linear sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical impedance spectroscopy (EIS), and double-layer capacitance (C_{dl}) were used to measure the electrochemical catalytic performance of OER, respectively. C_{dl} was evaluated by fitting the average anodic and cathodic current densities ($\Delta j = (j_a - j_c)/2$) at a voltage of -0.1 V (vs. Hg/HgO) to the scan rate. Polarization curves were recorded by linear sweep voltammetry at a scan rate of 2 mV s⁻¹ after the CV curve had stabilized and were all compensated for by a 90% drop in iR.

2. Supplementary Figures and Tables

Figure S1. SEM image of Zn-Fe precursors/NF.

Figure S2. SEM image of ZnFe₂O₄/NF.

Figure S3. SEM image of Ni_3S_2/NF .

Figure S4. HRTEM image of $ZnFe_2O_4$ (Mi_3S_2/NF).

Figure S5. SAED pattern of $ZnFe_2O_4@Ni_3S_2/NF$.

Figure S6. HRTEM image and corresponding profile of $ZnFe_2O_4@Ni_3S_2/NF$.

Figure S7. C 1s high-resolution spectra of the ZnFe₂O₄/NF, Ni₃S₂/NF and ZnFe₂O₄@Ni₃S₂/NF.

Figure S8. Polarization curves of $ZnFe_2O_4@Ni_3S_2/NF$ at different electrodeposition cycle.

Figure S9. CV curves for NF at scan rates from 20 to 120 mV s⁻¹.

Figure S10. CV curves for $ZnFe_2O_4/NF$ at scan rates from 20 to 120 mV s⁻¹.

Figure S11. CV curves for Ni_3S_2/NF at scan rates from 20 to 120 mV s⁻¹.

Figure S12. CV curves for ZnFe₂O₄@Ni₃S₂/NF at scan rates from 20 to 120 mV s⁻¹.

Figure S13. OER polarization curve of $ZnFe_2O_4@Ni_3S_2/NF$ initial and after 1000 CV cycles.

Figure S14. OER polarization curve of $ZnFe_2O_4@Ni_3S_2/NF$ initial and after 1000 CV cycles.

Figure S15. XRD image of ZnFe₂O₄@Ni₃S₂/NF initial and after 1000 CV cycles.

Figure S16. SEM image of ZnFe₂O₄@Ni₃S₂/NF initial.

Figure S17. SEM image of $ZnFe_2O_4$ @Ni₃S₂/NF after 1000 CV cycle.

Catalysts	Overpotential (mV) at 10 mA cm ⁻²	Tafel solp (mV dec ⁻¹)	Electrolyte	Ref.
NiCo ₂ O ₄ @MoS ₂ /TM	313	66.8	1.0 M KOH	Bao <i>et al</i> . ¹
ZnFe ₂ O ₄ @ZnFe ₂ S ₄ /NF	320	73	1.0 M KOH	Mohammadpour <i>et al</i> . ²
ZnFe _{1.25} Al _{0.75} O ₄ /NF	270	79	1.0 M KOH	Moon <i>et al</i> . ³
NiFe ₂ O ₄ /N-graphene	340	93.2	1.0 M KOH	Navadeepthy et al.4
CoS/NiFe2O4/NF	227	53	1.0 M KOH	Meng <i>et al.</i> ⁵
CoFe ₂ O ₄ /NF	287	43	1.0 M KOH	Lee <i>et al</i> . ⁶
SnFe ₂ O ₄ /NF	263	57	1.0 M KOH	Rajput <i>et al.</i> ⁷
CuCo ₂ O ₄ -CuO/NF	289	73	1.0 M KOH	Silva <i>et al.</i> ⁸
NiCo LDH/NiCoS/CC	207	48	1.0 M KOH	Li et al. ⁹
H-CoS _x @NiFe LDH/NF	250	49	1.0 M KOH	Lee <i>et al</i> . ¹⁰
N- Fe ₂ O ₃ /NiTe ₂ /NF	253	57.7	1.0 M KOH	Li <i>et al</i> . ¹¹
ZnFe ₂ O ₄ @Ni ₃ S ₂ /NF	254	39.29	1.0 M KOH	This work

Table S1. Comparison of OER performance for $ZnFe_2O_4$ ($@Ni_3S_2$ /NF with other reported non-noble systems.

References

- W. W. Bao, Y. Li, J. J. Zhang, T. T. Ai, C. M. Yang and L. L. Feng, *Int. J. Hydrogen Energy*, 2023, 48, 12176-12184.
- 2. E. Mohammadpour and K. Asadpour-Zeynali, Int. J. Hydrogen Energy, 2021, 46, 26940-26949.
- H. Moon, N. Son, M. S. Goh, T. Yoon, J. Kim, C. Liu, Y. Im, S. J. Yoon and M. Kang, *Appl. Surf. Sci.*, 2023, 632, 12.
- 4. D. Navadeepthy, A. Rebekah, C. Viswanthan and N. Ponpandian, *Int. J. Hydrogen Energy*, 2021, **46**, 21512-21524.
- 5. L. X. Meng, H. C. Xuan, G. H. Zhang, R. Wang, J. Wang, Y. Y. Guan, X. Yu, X. H. Liang, Y. P. Li and P. D. Han, *Electrochim. Acta*, 2022, **404**, 10.
- G. H. Y. Lee, M. Jeong, H. R. Kim, M. Kwon, S. Baek, S. Oh, M. H. Y. Lee, D. J. Lee and J. H. Joo, ACS Appl. Mater. Interfaces, 2022, 14, 48598-48608.
- A. Rajput, A. A. Pandey, A. Kundu and B. Chakraborty, *Chem. Commun.*, 2023, 59, 4943-4946.
- T. R. Silva, R. A. Raimundo, V. D. Silva, J. R. D. Santos, A. J. M. Araújo, J. Oliveira,
 L. C. de Lima, F. F. da Silva, L. D. Ferreira and D. A. Macedo, *Int. J. Hydrogen Energy*,
 2023, 48, 17160-17176.
- J. H. Li, L. L. Wang, H. J. He, Y. Q. Chen, Z. R. Gao, N. Ma, B. Wang, L. L. Zheng, R. L. Li, Y. J. Wei, J. Q. Xu, Y. Xu, B. W. Cheng, Z. Yin and D. Ma, *Nano Res.*, 2022, 15, 4986-4995.
- 10. Y. J. Lee and S. K. Park, *Small*, 2022, **18**, 10.
- W. J. Li, Y. Q. Deng, L. Luo, Y. S. Du, X. H. Cheng and Q. Wu, J. Colloid Interface Sci., 2023, 639, 416-423.