Supporting Information

Heterostructured ZnFe2O4@Ni3S² nanosheet arrays on Ni foam as an efficient

oxygen evolution catalyst

*Haiqing Liu, ^a Juhong Miao,*a Yubin Wang, ^a Siyu Chen, ^a Yujia Tang ^a and Dongdong Zhu*a*

^a School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China. E-mail: miaojh_2008@163.com, dd.zhu@nuist.edu.cn

1. Experimental Section

1.1 Materials

Zinc(II) acetate anhydrous (Zn(CH₃COO)₂), iron(III) nitrate nonahydrate (Fe(NO)₃⋅9H₂O), thiourea (CH_4N_2S) and ammonium fluoride (NH_4F) were purchased from Sinpharm Chemical Reagent Co. Ltd, China. Urea (H_2NCONH_2) and Nickel(II) chloride hexahydrate (NiCl2∙6H2O) were obtained from Aladdin Reagent Co. Ltd. Suzhou Sinero Technology Co., Ltd provided Nickel foam and RuO₂.

1.2 Synthesis of ZnFe2O4/NF

The successful growth of $ZnFe₂O₄$ nanosheets on nickel foam was synthesized by a typical hydrothermal method. Firstly, the nickel foam $(2 \text{ cm} \times 4 \text{ cm})$ was ultrasonically cleaned with 3 M HCl and anhydrous ethanol for 10 min to remove surface oxides and oils. Then, 0.5 mmol of $Zn(CH_3COO)_{2}$, 1 mmol of Fe(NO)3∙9H₂O, 0.37 g of NH₄F, and 0.72 g of urea were dissolved in 30 mL of deionized water and stirred in an ultrasonic bath until a homogeneous clear solution was formed. The mixed solution and the pre-cleaned nickel foam substrate were transferred to a 50 mL sealed Teflon autoclave and reacted at 140 °C for 4 hours. The resulted Zn-Fe precursor/NF and precursor powder were rinsed with water and ethanol, respectively, and dried in an oven at 60 °C overnight. The above Zn-Fe precursor/NF and precursor powder were heated to 350 °C in a muffle furnace exposed to air and calcined for 2 h at a heating rate of 3 °C⋅min⁻¹ to obtain ZnFe₂O₄/NF and ZnFe₂O₄ powder.

1.3 **Synthesis** of $\text{ZnFe}_2\text{O}_4(a)$ Ni₃S₂/NF

 $ZnFe₂O₄(QNi₃S₂/NF was synthesized by an electrochemical deposition process in a simple$ three-electrode electrochemical system. The prepared $\text{ZnFe}_2\text{O}_4/\text{NF}$ (1 × 2 cm⁻²), platinum foil (1 \times 1 cm⁻²) and saturated Ag/AgCl were used as the working electrode, counter electrode, and reference electrode, respectively. The electrodeposition solution was obtained by dissolving 2 mmol NiCl₂⋅6H₂O and 40 mmol CH₄N₂S in 50 mL of deionized water and mixed thoroughly. Ni₃S₂ nanosheets were electrochemically deposited on the ZnFe_2O_4 nanosheets surface using cyclic voltammetry with a potential range of -1.2 to 0.2 V, a scan rate of 5 mV s⁻¹, and different electrodeposition cycles of 5, 10, 20 and 30. The resulted ZnFe₂O₄@Ni₃S₂/NF electrodes were washed several times with water and dried at 60 °C for 12 h.

1.4 Synthesis of Ni3S2/NF

For comparison purpose, N_iS_2 was prepared using the same electrodeposition procedure on pre-cleaned unmodified nickel foam electrodes.

1.5 Synthesis of RuO2/NF

The RuO₂ catalyst (20 mg) was first dispersed in a mixed solution with 1 mL of deionized water, 0.8 mL of anhydrous ethanol and 0.2 mL of 5 wt % Nafion solution. A homogeneous ink was formed after sonication for 30 min. Then, the prepared catalyst ink was dropped on a clean NF $(1 \times 1 \text{ cm}^{-2})$.

1.6 Characterization

All prepared electrodes were characterized via morphology, composition, and electrochemical tests. The structure of the prepared electrodes was characterized by X-ray powder diffraction (XRD) technology using a powder X-ray diffractometer (Bruker Rigaku-Dmax 2500) with CuKα radiation (λ = 0.15418 nm) in the range from 5° to 80°. The microscopic morphology and dimension of the samples were obtained on field emission scanning electron microscopy (FE-SEM, ZEISS GeminiSEM 300) and field emission transmission electron microscope (TEM, FEI Tecnai G2 F30), respectively. X-ray photoelectron spectroscopy (XPS) was employed to measure the chemical state of the products at an ESCALABMK II x-ray photoelectron spectrometer with Mg as the excitation source.

1.7 Electrochemical characterization

The electrochemical performance was tested using a CHI 660E electrochemical workstation (Chenhua, Shanghai, China) and a three-electrode system. The working electrode was a prepared nickel foam composite electrode (1×1 cm⁻²), the reference electrode was a Hg/HgO (1 M KOH) electrode, and the counting electrode was a graphite rod electrode. All electrochemical tests were carried out in an electrolyte of 1 M KOH at room temperature and the potential values tested were calibrated according to the reversible hydrogen electrode E (RHE) = E (Hg/HgO) + $0.059pH + 0.098$. After activation with a least of 100 turns of cyclic voltammetry (CV) scanning performed, cyclic voltammetry (CV), Linear sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical impedance spectroscopy (EIS), and double-layer capacitance $(C_{\rm dl})$ were used to measure the electrochemical catalytic performance of OER, respectively. C_{dl} was evaluated by fitting the average anodic and cathodic current densities $(\Delta i = (j_a - j_c)/2)$ at a voltage of -0.1 V (vs. Hg/HgO) to the scan rate. Polarization curves were recorded by linear sweep voltammetry at a scan rate of 2 mV s⁻¹ after the CV curve had stabilized and were all compensated for by a 90% drop in iR.

2. Supplementary Figures and Tables

Figure S1. SEM image of Zn-Fe precursors/NF.

Figure S2. SEM image of ZnFe₂O₄/NF.

Figure S3. SEM image of $\text{Ni}_3\text{S}_2/\text{NF}$.

Figure S4. HRTEM image of $ZnFe₂O₄@ Ni₃S₂/NF.$

Figure S5. SAED pattern of ZnFe₂O₄@Ni₃S₂/NF.

Figure S6. HRTEM image and corresponding profile of $\text{ZnFe}_2\text{O}_4(\text{\o}Ni_3\text{S}_2/\text{NF}}$.

Figure S7. C 1s high-resolution spectra of the $\text{ZnFe}_2\text{O}_4/\text{NF}$, Ni₃S₂/NF and $ZnFe₂O₄(*a*)Ni₃S₂/NF.$

Figure S8. Polarization curves of $\text{ZnFe}_2\text{O}_4(\text{Q/Ni}_3\text{S}_2/\text{NF})$ at different electrodeposition cycle.

Figure S9. CV curves for NF at scan rates from 20 to 120 mV s⁻¹.

Figure S10. CV curves for $\text{ZnFe}_2\text{O}_4/\text{NF}$ at scan rates from 20 to 120 mV s⁻¹.

Figure S11. CV curves for $Ni₃S₂/NF$ at scan rates from 20 to 120 mV s⁻¹.

Figure S12. CV curves for $\text{ZnFe}_2\text{O}_4@{\text{Ni}_3\text{S}_2/\text{NF}}$ at scan rates from 20 to 120 mV s⁻¹.

Figure S13. OER polarization curve of $\text{ZnFe}_2\text{O}_4(\text{QNi}_3\text{S}_2/\text{NF}$ initial and after 1000 CV cycles.

Figure S14. OER polarization curve of $ZnFe₂O₄(@Ni₃S₂/NF initial and after 1000 CV$ cycles.

Figure S15. XRD image of ZnFe₂O₄@Ni₃S₂/NF initial and after 1000 CV cycles.

Figure S16. SEM image of $\text{ZnFe}_2\text{O}_4(\text{QNi}_3\text{S}_2/\text{NF}$ initial.

Figure S17. SEM image of $\text{ZnFe}_2\text{O}_4\text{@Ni}_3\text{S}_2/\text{NF}$ after 1000 CV cycle.

Catalysts	Overpotential (mV) at 10 mA cm ⁻²	Tafel solp $(mV$ dec ⁻¹)	Electrolyte	Ref.
$NiCo2O4(a)MoS2/TM$	313	66.8	1.0 M KOH	Bao et al. 1
$ZnFe2O4(QZnFe2S4/NF)$	320	73	1.0 M KOH	Mohammadpour et al. ²
$ZnFe_{1.25}Al_{0.75}O_4/NF$	270	79	1.0 M KOH	Moon <i>et al.</i> ³
$NiFe2O4/N-graphene$	340	93.2	1.0 M KOH	Navadeepthy et al. ⁴
CoS/NiFe ₂ O ₄ /NF	227	53	1.0 M KOH	Meng et al. ⁵
CoFe ₂ O ₄ /NF	287	43	1.0 M KOH	Lee <i>et al.</i> ⁶
SnFe ₂ O ₄ /NF	263	57	1.0 M KOH	Rajput et al. ⁷
$CuCo2O4-CuO/NF$	289	73	1.0 M KOH	Silva et al. ⁸
NiCo LDH/NiCoS/CC	207	48	1.0 M KOH	Li et al. ⁹
$H-CoS_x(\omega)$ NiFe LDH/NF	250	49	1.0 M KOH	Lee et al. 10
$N - Fe2O3/NiTe2/NF$	253	57.7	1.0 M KOH	Li et al. ¹¹
$ZnFe2O4(a)Ni3S2/NF$	254	39.29	1.0 M KOH	This work

Table S1. Comparison of OER performance for $\text{ZnFe}_2\text{O}_4\text{@Ni}_3\text{S}_2/\text{NF}$ with other reported non-noble systems.

References

- 1. W. W. Bao, Y. Li, J. J. Zhang, T. T. Ai, C. M. Yang and L. L. Feng, *Int. J. Hydrogen Energy*, 2023, **48**, 12176-12184.
- 2. E. Mohammadpour and K. Asadpour-Zeynali, *Int. J. Hydrogen Energy*, 2021, **46**, 26940-26949.
- 3. H. Moon, N. Son, M. S. Goh, T. Yoon, J. Kim, C. Liu, Y. Im, S. J. Yoon and M. Kang, *Appl. Surf. Sci.*, 2023, **632**, 12.
- 4. D. Navadeepthy, A. Rebekah, C. Viswanthan and N. Ponpandian, *Int. J. Hydrogen Energy*, 2021, **46**, 21512-21524.
- 5. L. X. Meng, H. C. Xuan, G. H. Zhang, R. Wang, J. Wang, Y. Y. Guan, X. Yu, X. H. Liang, Y. P. Li and P. D. Han, *Electrochim. Acta*, 2022, **404**, 10.
- 6. G. H. Y. Lee, M. Jeong, H. R. Kim, M. Kwon, S. Baek, S. Oh, M. H. Y. Lee, D. J. Lee and J. H. Joo, *ACS Appl. Mater. Interfaces*, 2022, **14**, 48598-48608.
- 7. A. Rajput, A. A. Pandey, A. Kundu and B. Chakraborty, *Chem. Commun.*, 2023, **59**, 4943-4946.
- 8. T. R. Silva, R. A. Raimundo, V. D. Silva, J. R. D. Santos, A. J. M. Araújo, J. Oliveira, L. C. de Lima, F. F. da Silva, L. D. Ferreira and D. A. Macedo, *Int. J. Hydrogen Energy*, 2023, **48**, 17160-17176.
- 9. J. H. Li, L. L. Wang, H. J. He, Y. Q. Chen, Z. R. Gao, N. Ma, B. Wang, L. L. Zheng, R. L. Li, Y. J. Wei, J. Q. Xu, Y. Xu, B. W. Cheng, Z. Yin and D. Ma, *Nano Res.*, 2022, **15**, 4986-4995.
- 10. Y. J. Lee and S. K. Park, *Small*, 2022, **18**, 10.
- 11. W. J. Li, Y. Q. Deng, L. Luo, Y. S. Du, X. H. Cheng and Q. Wu, *J. Colloid Interface Sci.*, 2023, **639**, 416-423.