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1. Experimental Section

1.1 Materials  

Zinc(II) acetate anhydrous (Zn(CH3COO)2), iron(III) nitrate nonahydrate (Fe(NO)3∙9H2O), 

thiourea (CH4N2S) and ammonium fluoride (NH4F) were purchased from Sinpharm 

Chemical Reagent Co. Ltd, China. Urea (H2NCONH2) and Nickel(II) chloride hexahydrate 

(NiCl2∙6H2O) were obtained from Aladdin Reagent Co. Ltd. Suzhou Sinero Technology Co., 

Ltd provided Nickel foam and RuO2.

1.2 Synthesis of ZnFe2O4/NF 

The successful growth of ZnFe2O4 nanosheets on nickel foam was synthesized by a typical 

hydrothermal method. Firstly, the nickel foam (2 cm × 4 cm) was ultrasonically cleaned 

with 3 M HCl and anhydrous ethanol for 10 min to remove surface oxides and oils. Then, 

0.5 mmol of Zn(CH3COO)2, 1 mmol of Fe(NO)3∙9H2O, 0.37 g of NH4F, and 0.72 g of urea 

were dissolved in 30 mL of deionized water and stirred in an ultrasonic bath until a 

homogeneous clear solution was formed. The mixed solution and the pre-cleaned nickel 

foam substrate were transferred to a 50 mL sealed Teflon autoclave and reacted at 140 °C 

for 4 hours. The resulted Zn-Fe precursor/NF and precursor powder were rinsed with water 

and ethanol, respectively, and dried in an oven at 60 °C overnight. The above Zn-Fe 

precursor/NF and precursor powder were heated to 350 °C in a muffle furnace exposed to 

air and calcined for 2 h at a heating rate of 3 °C∙min-1 to obtain ZnFe2O4/NF and ZnFe2O4 

powder.

1.3 Synthesis of ZnFe2O4@Ni3S2/NF

ZnFe2O4@Ni3S2/NF was synthesized by an electrochemical deposition process in a simple 

three-electrode electrochemical system. The prepared ZnFe2O4/NF (1 × 2 cm-2), platinum 

foil (1 × 1 cm-2) and saturated Ag/AgCl were used as the working electrode, counter 

electrode, and reference electrode, respectively. The electrodeposition solution was obtained 

by dissolving 2 mmol NiCl2∙6H2O and 40 mmol CH4N2S in 50 mL of deionized water and 

mixed thoroughly. Ni3S2 nanosheets were electrochemically deposited on the ZnFe2O4 

nanosheets surface using cyclic voltammetry with a potential range of -1.2 to 0.2 V, a scan 

rate of 5 mV s-1, and different electrodeposition cycles of 5, 10, 20 and 30. The resulted 

ZnFe2O4@Ni3S2/NF electrodes were washed several times with water and dried at 60 °C for 

12 h. 

1.4 Synthesis of Ni3S2/NF

For comparison purpose, Ni3S2 was prepared using the same electrodeposition procedure on 

pre-cleaned unmodified nickel foam electrodes.



1.5 Synthesis of RuO2/NF

The RuO2 catalyst (20 mg) was first dispersed in a mixed solution with 1 mL of deionized 

water, 0.8 mL of anhydrous ethanol and 0.2 mL of 5 wt % Nafion solution. A homogeneous 

ink was formed after sonication for 30 min. Then, the prepared catalyst ink was dropped on 

a clean NF (1 × 1cm-2).

1.6 Characterization

All prepared electrodes were characterized via morphology, composition, and 

electrochemical tests. The structure of the prepared electrodes was characterized by X-ray 

powder diffraction (XRD) technology using a powder X-ray diffractometer (Bruker Rigaku-

Dmax 2500) with CuKα radiation (λ = 0.15418 nm) in the range from 5° to 80°. The 

microscopic morphology and dimension of the samples were obtained on field emission 

scanning electron microscopy (FE-SEM, ZEISS GeminiSEM 300) and field emission 

transmission electron microscope (TEM, FEI Tecnai G2 F30), respectively. X-ray 

photoelectron spectroscopy (XPS) was employed to measure the chemical state of the 

products at an ESCALABMK II x-ray photoelectron spectrometer with Mg as the excitation 

source.

1.7 Electrochemical characterization

The electrochemical performance was tested using a CHI 660E electrochemical workstation 

(Chenhua, Shanghai, China) and a three-electrode system. The working electrode was a 

prepared nickel foam composite electrode (1 × 1 cm-2), the reference electrode was a 

Hg/HgO (1 M KOH) electrode, and the counting electrode was a graphite rod electrode. All 

electrochemical tests were carried out in an electrolyte of 1 M KOH at room temperature 

and the potential values tested were calibrated according to the reversible hydrogen 

electrode E (RHE) = E (Hg/HgO) + 0.059pH + 0.098. After activation with a least of 100 

turns of cyclic voltammetry (CV) scanning performed, cyclic voltammetry (CV), Linear 

sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical impedance 

spectroscopy (EIS), and double-layer capacitance (Cdl) were used to measure the 

electrochemical catalytic performance of OER, respectively. Cdl was evaluated by fitting the 

average anodic and cathodic current densities (Δj = (ja – jc) /2) at a voltage of -0.1 V (vs. 

Hg/HgO) to the scan rate. Polarization curves were recorded by linear sweep voltammetry 

at a scan rate of 2 mV s-1 after the CV curve had stabilized and were all compensated for by 

a 90% drop in iR.



2. Supplementary Figures and Tables

Figure S1. SEM image of Zn-Fe precursors/NF.

Figure S2. SEM image of ZnFe2O4/NF.



Figure S3. SEM image of Ni3S2/NF.

Figure S4. HRTEM image of ZnFe2O4@ Ni3S2/NF.



Figure S5. SAED pattern of ZnFe2O4@Ni3S2/NF.

Figure S6. HRTEM image and corresponding profile of ZnFe2O4@Ni3S2/NF.



Figure S7. C 1s high-resolution spectra of the ZnFe2O4/NF, Ni3S2/NF and 
ZnFe2O4@Ni3S2/NF.

Figure S8. Polarization curves of ZnFe2O4@Ni3S2/NF at different electrodeposition 
cycle.



Figure S9. CV curves for NF at scan rates from 20 to 120 mV s-1.

Figure S10. CV curves for ZnFe2O4/NF at scan rates from 20 to 120 mV s-1.



Figure S11. CV curves for Ni3S2/NF at scan rates from 20 to 120 mV s-1.

Figure S12. CV curves for ZnFe2O4@Ni3S2/NF at scan rates from 20 to 120 mV s-1.



Figure S13. OER polarization curve of ZnFe2O4@Ni3S2/NF initial and after 1000 CV 
cycles.

Figure S14. OER polarization curve of ZnFe2O4@Ni3S2/NF initial and after 1000 CV 
cycles.



Figure S15. XRD image of ZnFe2O4@Ni3S2/NF initial and after 1000 CV cycles.

Figure S16. SEM image of ZnFe2O4@Ni3S2/NF initial.



Figure S17. SEM image of ZnFe2O4@Ni3S2/NF after 1000 CV cycle.



Table S1. Comparison of OER performance for ZnFe2O4@Ni3S2/NF with other 
reported non-noble systems.

Catalysts
Overpotential

(mV)
at 10 mA cm-2

Tafel solp 
(mV dec-1)

Electrolyte Ref.

NiCo2O4@MoS2/TM 313 66.8 1.0 M KOH Bao et al.1

ZnFe2O4@ZnFe2S4/NF 320 73 1.0 M KOH Mohammadpour et al.2

ZnFe1.25Al0.75O4/NF 270 79 1.0 M KOH Moon et al.3

NiFe2O4/N-graphene 340 93.2 1.0 M KOH Navadeepthy et al.4

CoS/NiFe2O4/NF 227 53 1.0 M KOH Meng et al.5

CoFe2O4/NF 287 43 1.0 M KOH Lee et al.6

SnFe2O4/NF 263 57 1.0 M KOH Rajput et al.7

CuCo2O4-CuO/NF 289 73 1.0 M KOH Silva et al.8

NiCo LDH/NiCoS/CC 207 48 1.0 M KOH Li et al.9

H-CoSx@NiFe 
LDH/NF

250 49 1.0 M KOH Lee et al.10

N- Fe2O3/NiTe2/NF 253 57.7 1.0 M KOH Li et al.11

ZnFe2O4@Ni3S2/NF 254 39.29 1.0 M KOH This work
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