Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Table of Content

- 1. Chemicals and Reagents
- 2. Reaction buffers
- 3. Oligonucleotides sequences
- 4. Results

1. Chemicals and Reagents

Table 1 — Reagents used in the experimental wor	(including the purpo	ose of use and bran	d name or supplier)
---	----------------------	---------------------	---------------------

Reagent	Purpose	Supplier
Oligonucleotides	Cleavage reaction	DnaSynthesis (Moscow, Russia)
H ₂ O RNAse/DNAse Free	Oligonucleotide dilution and	Belbiolab (Moscow, Russia)
	buffer preparation	
EDTA	TBE buffer preparation	Helicon (Moscow, Russia)
Tris	TBE buffer preparation	Eurogen (Moscow, Russia)
Boric Acid	TBE buffer preparation	Helicon (Moscow, Russia)
Urea	Stop buffer and PAGE	Diam (Moscow, Russia)
	preparation	
Bromophenol	Stop buffer	Chimmed (Moscow, Russia)
Acrylamide	Preparation of PAGE	Diam (Moscow, Russia)
Bisacrylamide	Preparation of PAGE	Helicon (Moscow, Russia)
APS	Preparation of PAGE	Helicon (Moscow, Russia)
TEMED	Preparation of PAGE	Helicon (Moscow, Russia)
RNase H	Cleavage reaction	TransGen (Beijing, China)

2. Reaction buffers

Commercial 10x RNase H buffer was used (200 mM This-HCL pH 8.3, 150 mM DT, 1 M KCl, 45 mM MgCl₂) in cleavage reactions.

Table 2 – Reaction termination buffer		
Reagent	Concentration	
Urea	7 M	
TBE	0.3 M	
Bromophenol	0.04 %	

____**I**

2. Oligonucleotides sequences

 Table 3 - Oligonucleotide sequences used in the research

Oligo ID	Purpose	Sequence $5' \rightarrow 3'$
GFP RNA	Cleavage target	FAM-gcc acc uac ggc aag cu g acc
		cug aag uuc auc ugc acc acc ggc
		aag cug ccc gug ccc
KRAS (DNA)	Cancer marker mRNA fragment	GTT GGA GCT GGT GGC G TA
	(synthesized as DNA) for DNA	GGC AAG AGT GC
	agents activation	
miR-17 (RNA)	Cancer marker microRNA for	caa agu gcu uac agu gca ggu ag
	DNA agents activation	
miR-20 (RNA)	Cancer marker microRNA for	uaa agu gcu uau agu gca ggu ag
	DNA agents activation	

ASOa	Part of the DNA agents that binds	CTA CCT GCA CTG HEG GGG
	mik-1/	ACTIC
ASOb	Part of the DNA agents that binds	A AGT AGA CGT HEG <u>TAA</u>
	miR-17	<u>GCA CTT TG</u>
ASOa-Th	Part of the DNA agents that binds	AGG TAG CT ACC TGC ACT
	miR-17	GTA AGC ACT TTG CTA CCT
		GCA CTG HEG GGG ACT TC
ASOb-Th	Part of the DNA agents that binds	A AGT AGA CGT HEG <u>TAA</u>
	miR-17	GCA CTT TG CTA CCT GCA
		CTG TAA GCA CTT TG CAA
		AGT GCT TA
ASOa-KRAS	Part of the DNA agents that binds	GCAC TCT TGC CTA HEG CT
	KRAS	TCA GGG
ASOb-KRAS	Part of the DNA agents that binds	TGC AGA TGA A HEG C GCC
	KRAS	ACC AGC TCC AAC
ASOa-Th-KRAS	Part of the DNA agents that binds	TAG GCA AGA GCA CTC TTG
	KRAS	CCT ACG CCA CCA GCT CAC
		TCT TGC CTA HEG CT TCA
		GGG
ASOb-Th-KRAS	Part of the DNA agents that binds	TGC AGA TGA A HEG C GCC
	KRAS	ACC AGC TCC AAC G CAC TCT
		TGC CTA CGC CAC CAG CTC
		CAA C GCT GGT GGCG
ASO	Positive control	UGC AGA TGA ACT TCA GGG
		UC

N – *DNA nucleotides*

n - BNA nucleonaes n - RNA nucleonaes \underline{N} – underlined nucleotides with 2'-O-Me modification HEG – hexaethilenglycol-spacer FAM – Carboxyfluorescein

3. Results

Figure S1. DNA thresholder activates RNase H-dependent targeted GFP RNA cleavage only in the presence of high concentrations of KRAS (see details Fig.S3). A)3i-A Th-k in complex with 3 molecules of KRAS and targeted GFP RNA (active form). B) Cleavage of GFP RNA (1000 nM) after incubation BiASO-k, 2i-A Th-k, 3i-A Th-k (50 nM) in the presence of various concentrations of KRAS (0-500 nM) with recombinant RNase H (0,5 unit) in commercial buffer (4,5 Mg2+) for RNase H at 37°C in 20 min. The cleavage was analysed by 15% denaturing PAGE (80V, 120 min). Black arrow indicates initial GFP RNA substrate, below are cleaved products. C) Quantification of three independent cleavage experiments. The threshold line set at 1.75%, which corresponds to three standard deviations above the background average (at 0 nM of KRAS for 3 DNA agents). D) GFP RNA cleavage efficacy (%) using different DNA agents in the presence of miR-17 (0-500 nM). The data are average values of 3 independent experiments with standard deviation.

Figure S2. Schematic representation of the expected conformational changes of the DNA agents. Complexes of targeted mRNA (brown) and cancer marker RNA (black) with A) BiASO consisting of ASOa (green) and ASOb (blue), B) 2i-A Th consisting of ASOa-Th (green) and ASOb (blue), C) 3i-A Th consisting of ASOa-Th (green) and ASOb (blue).

Oligonucleotides name	Melting temperature, °C	Gibbs energy, kcal/mol
	Nucleic acid folding	
GFP RNA	52.8	-5.5
KRAS (DNA)	46.0	-1.2
miR-17 (RNA)	54.4	-2.6
miR-20 (RNA)	54.4	-2.6
ASOa	34.3	0.2
ASOb	26.6	0.8
ASOa-Th	56.2	-4.4
ASOb-Th	67.1	-10.3
ASOa-KRAS	44.6	-0.5
ASOb-KRAS	42.7	-0.7
ASOa-Th-KRAS	69.2	-8.6
ASOb-Th-KRAS	71.6	-13.7
ASO	29.3	0.5
	Nucleic acids hybridization	
ASOa + miR-17 (RNA)	43.3	-12.9
ASOb + miR-17 (RNA)	33.2	-10.2
ASOa + miR-20 (RNA)	40.8	-12.3
ASOb + miR-20 (RNA)	32	-9.9
ASOa-Th + miR-17 (RNA)	64.6	-26.4
ASOb-Th + miR-17 (RNA)	64.6	-26.4
ASOa-Th + miR-20 (RNA)	59.2	-22.5
ASOb-Th + miR-20 (RNA)	59.2	-22.5
ASOa-KRAS + KRAS (DNA)	48.4	-14.7
ASOb-KRAS + KRAS (DNA)	61.7	-21.0
ASOa-Th-KRAS + KRAS (DNA)	74.5	-34.6
ASOb-Th-KRAS + KRAS (DNA)	76.6	-38.4

Table 4 – Gibbs energy and Melting temperature of oligonucleotides folding and hybridization predicted by UNA Fold Web Server. Energy rules: $37 \degree C$, [Na+]=165 mM, [Mg2+]=4,5 mM, concentration – 50 nM.

Figure S3. 3 input Antisense Thresholder design. (A) 3i-A Th-k in complex with 3 molecules of KRAS and targeted GFP RNA (active form). (B) 3i-A Th in complex with 3 molecules of miR-17 and targeted GFP RNA (active form).