Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Table of Contents

General remarks	S2
Synthesis of the new compounds	S2
Crystallographic analysis	S6
DFT calculations	S13
PLQY measurement	S27
References	S28
¹ H and ¹³ C NMR and HRMS spectra of the newly synthesized compounds	S29

General remarks

All the manipulations were carried out under dry argon atmosphere using the standard Schlenk technique unless otherwise noted. 2-(2,4-Di-*tert*-butylphenyl)-1*H*-pyrrole was prepared according to a literature.^{S1} ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III (¹H: 400 MHz, ¹³C: 100 MHz) or on a JEOL JNM-ECZ600R (¹H: 600 MHz, ¹³C: 150 MHz) spectrometer and referenced to appropriate internal or external standard (SiMe₄). Chemical shifts were reported as the delta scale in ppm. High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF mass spectrometer (ionization mode: APCI or ESI). UV/vis spectra were recorded on a Shimadzu UV-3101PC or a JASCO V-670 spectrometer. Fluorescence spectra were measured using a Hitachi F-4500 or on a JASCO FP-8600 spectrometer.

Synthesis of the new compounds Synthesis of LHMe₂.

A mixture of 2-(2,4-di-*tert*-butylphenyl)-1*H*-pyrrole (0.86 g, 3.0 mmol), 2,4,6trimethylbenzaldehyde (MesCHO) (0.22 g, 1.5 mmol), CF₃COOH (0.034 mL, 0.45 mmol), and CH₂Cl₂ (75 mL) was stirred at rt under dark for 3 h. The mixture was treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.34 g, 1.5 mmol) and stirred for 5 h. Triethylamine (0.062 mL, 0.45 mmol) was added, and the mixture was further stirred for 0.5 h. The mixture was filtered through an Al₂O₃ short path column using CH₂Cl₂ as an eluent and evaporated under reduced pressure. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂/AcOEt = 1:0 to 5:1 in v/v) to afford LHMe₂ as an orange solid (0.98 g, 1.4 mmol, 47%).

¹H NMR (CDCl₃, 400 MHz) δ 7.53 (d, *J* = 2.6 Hz, 2H), 7.34 (d, *J* = 2.6 Hz, 2H), 6.96 (s, 2H), 6.69 (d, *J* = 4.2 Hz, 2H), 6.40 (d, *J* = 4.2 Hz, 2H), 3.62 (s, 6H), 2.38 (s, 3H), 2.19 (s, 6H), 1.43 (s, 18H), 1.33 (s, 18H). ¹³C NMR (CDCl₃, 150 MHz) δ 155.97, 153.75, 145.30, 142.03, 141.09, 137.20, 137.13, 136.93, 134.31, 127.71, 127.20, 126.98, 125.00, 124.70, 118.92, 61.41, 35.33, 34.53, 31.55, 31.02, 21.16, 20.05. HRMS (APCI) *m/z* calcd for C₄₈H₆₂N₂O₂ 699.4884 [M+H]⁺; observed: 699.4884.

Synthesis of LH₃.

To a mixture of NaH (60 wt% dispersion in a mineral oil, 0.16 g, ca. 4.1 mmol) and DMF (10 mL) was added 1-dodecanethiol (0.96 mL, 4.0 mmol), and the mixture was stirred at rt for 1 h. LHMe₂ (0.70 g, 1.0 mmol) was added, and the mixture was stirred at 110 °C for 4 h. aq. NH₄Cl (2 mL) and distilled water (3 mL) were added, and the mixture was extracted with AcOEt. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography (SiO₂, hexane/CH₂Cl₂ = 5 : 1 in v/v) to afford LH₃ as a red solid (0.43 g, 0.64 mmol, 64%).

¹H NMR (CDCl₃, 400 MHz) δ 7.57(d, *J* = 2.2 Hz, 2H), 7.34 (d, *J* = 2.2 Hz, 2H), 6.95(s, 2H), 6.86 (d, *J* = 3.6 Hz, 2H), 6.45 (d, *J* = 3.6 Hz, 2H), 2.38 (s, 3H), 2.13 (s, 6H), 1.53 (s, 18H), 1.34 (s, 18H) (the OH signals were not observed); ¹³C NMR (CDCl₃, 150 MHz) δ 154.49, 152.50, 141.61, 139.00, 137.14, 136.74, 136.65, 135.56, 134.66, 128.39, 127.59, 124.94, 122.67, 117.88, 116.29, 34.62, 34.07, 31.27, 30.02, 21.86, 19.60; HRMS (APCI) *m*/*z* calcd for C₄₆H₅₈N₂O₂ 671.4571 [M+H] ⁺; observed: 671.4510.

Synthesis of LSbCl₂ and LSbCl(OH) (entry 2 in Table 1)

A mixture of SbCl₃ (91 mg, 0.4 mmol) and pyridine (5 mL) was stirred at rt under O₂ atmosphere for 0.5 h before the addition of **LH**₃ (13.4 mg, 0.020 mmol), and then the mixture was refluxed for 24 h under irradiation with a white LED (7 W). Remaining SbCl₃ was removed by filtration using AcOEt as an eluent, and the solvents were removed under reduced pressure. The residue was subjected to column chromatography (SiO₂, hexane/AcOEt = 12 : 1 in v/v) for afford **LSbCl₂** (4.1 mg, 0.0048 mmol, 24%) and **LSbCl(OH)** (5.5 mg, 0.0066 mmol, 33%) as dark green solids. **LSbCl₂**: ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (d, *J* = 2.6 Hz, 2H), 7.50 (d, *J* = 2.6 Hz, 2H), 7.02 (d, *J* = 4.6 Hz, 2H), 6.99 (s, 2H), 6.67 (d, *J* = 4.6 Hz, 2H), 2.39 (s, 3H), 2.15 (s, 6H), 1.61 (s, 18H), 1.34 (s,

18H). ¹³C NMR (CDCl₃, 150 MHz) δ 156.41, 154.73, 142.86, 141.15, 138.58, 138.08, 137.13, 136.63, 132.00, 130.72, 128.74, 128.13, 123.32, 117.15, 116.38, 35.93, 34.38, 31.32, 30.53, 21.19, 19.67. HRMS (APCI) *m*/*z* calcd for C₄₆H₅₅N₂O₂Cl₂¹²¹Sb 858.2673, C₄₆H₅₅N₂O₂Cl₂¹²³Sb 860.2668 (M⁺); observed 858.2573, 860.2589.

LSbCl(OH): ¹H NMR (CDCl₃, 400 MHz) δ 7.59 (d, J = 2.8 Hz, 2H), 7.48 (d, J = 2.8 Hz, 2H), 7.04 (d, J = 4.6 Hz, 2H), 6.98 (s, 2H), 6.68 (d, J = 4.6 Hz, 2H), 2.39 (s, 3H), 2.17 (s, 3H), 2.13 (s, 3H), 1.61 (s, 18H), 1.34 (s, 18H) (the OH signal was not observed). ¹³C NMR (CDCl₃, 150 MHz) δ 156.63, 155.01, 142.38, 140.93, 138.41, 137.26, 136.90, 132.39, 130.78, 128.26, 128.11, 128.01, 123.40, 117.12, 116.87, 35.93, 34.34, 31.35, 30.47, 21.21, 19.69 (only 4 signals were observed for the benzene ring carbon atoms of the Mes group). HRMS (APCI) *m*/*z* calcd for C₄₆H₅₅N₂O₂Cl₂¹²¹Sb 840.3012, C₄₆H₅₅N₂O₂Cl₂¹²³Sb 842.3014 (M⁺); observed 840.3015, 842.3047.

Synthesis of LSbCl₂ (entry 3 in Table 1)

A mixture of SbCl₃ (0.46 g, 2.0 mmol) and pyridine (25 mL) was stirred at rt under O₂ atmosphere for 0.5 h before the addition of **LH**₃ (67.1 mg, 0.10 mmol), and then the mixture was stirred at rt for 24 h under irradiation with a white LED (7 W). Remaining SbCl₃ was removed by filtration using AcOEt as an eluent, and the solvents were removed under reduced pressure. The residue was subjected to column chromatography (SiO₂, hexane/AcOEt = 12 : 1 in v/v) for afford **LSbCl₂** as a dark green solid (46.1 mg, 0.048 mmol, 48%).

Synthesis of LSb(OH)₂.

A mixture of LSbCl₂ (25.8 mg, 0.030 mmol), pyridine (7.5 mL), and distilled water (1.5 mL) was refluxed for 24 h and then concentrated under reduced pressure. The residue was subjected to column chromatography (SiO₂, hexane/AcOEt = 12 : 1 in v/v) for afford LSb(OH)₂ as a dark green solid (20.1 mg, 0.024 mmol, 81%).

¹H NMR (CDCl₃, 400 MHz) δ 7.61 (d, *J* = 2.6 Hz, 2H), 7.46 (d, *J* = 2.6 Hz, 2H), 7.07 (d, *J* = 4.6 Hz, 2H), 6.98 (s, 2H), 6.70 (d, *J* = 4.6 Hz, 2H), 2.39 (s, 3H), 2.14 (s, 6H), 1.62 (s, 18H), 1.33 (s, 18H) (the OH signal was not observed). ¹³C NMR (CDCl₃, 150 MHz) δ 156.63, 155.01, 142.38, 140.93, 138.41, 137.26, 136.90, 132.39, 130.78, 128.26, 128.11, 128.01, 123.40, 117.12, 116.87, 35.93, 34.34, 31.35, 30.47, 21.21, 19.69. HRMS (ESI) *m*/*z* calcd for C₄₆H₅₇N₂O₄¹²¹Sb 821.3273, C₄₆H₅₇N₂O₄¹²³Sb 823.3286 ([M–H]⁻); observed 821.3436, 823.3449.

Stability test of LSbCl₂

LSbCl₂ (5.0 mg, 6 μ mol) was dissolved in moisture-saturated CDCl₃ (0.5 mL, containing ca. 1 eq. of H₂O), and the solution was left under air at room temperature. ¹H NMR and TLC analyses of the mixture did not show that **LSbCl₂** was not decomposed after 48 h at room temperature.

Figure S2. Images of the TLCs (SiO₂, AcOEt/hexane = 1:12) of the as-synthesized $LSbCl_2$ (top) and the CDCl₃ solution after 48 h.

Crystallographic analysis

Single crystal X-ray diffraction (XRD) measurements were carried out on a Rigaku MicroMax-007HF diffractometer equipped with a VariMax light source (Mo K α , $\lambda = 0.71073$ Å). The crystals were kept at -100 °C while the data collection. The collected data were processed using the CrysAlisPro (ver. 1.171.41.117a) program package (Rigaku Oxford Diffraction, 2021). Using Olex2,^{S2} the structures were solved with the SHELXT and refined with the SHELXL program packages.^{S3} The full-matrix least-squares refinements were performed on F^2 . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Crystallographic data are summarized in the next page. For LSbCl(OH)-acetone, axial Cl and OH ligands, one of the *t*-butyl groups, and acetone molecule were disordered over two sites with the occupancy ratios of 95:5, 64:36, and 74:26, respectively. SADI, RIGU, and SIMU restraints were included for the refinement of these disordered parts. In addition, for the disordered Cl and O atoms, EADP constraints were used to refine their anisotropic displacement parameters. CCDC 2296634 (LSbCl₂), 2323628 (LSbCl(OH)-acetone), and 2323629 (LSb(OH)₂) contain the additional crystallographic data.

	LSbCl ₂	LSbCl(OH)-	LSb(OH) ₂
		acetone	
Empirical formula	$C_{46}H_{55}Cl_2N_2O_2Sb$	C ₄₉ H62ClN ₂ O ₄ Sb	$C_{46}H_{57}N_2O_4Sb$
Formula weight	860.57	900.20	823.68
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	Сс	$P2_{l}/c$	Pbca
a/Å	20.0826(9)	24.3993(6)	28.4574(5)
b/Å	14.1346(5)	16.8320(4)	27.9101(4)
c/Å	15.2463(7)	11.6630(3)	32.3437(6)
β°	100.815(5)	100.297(3)	90
<i>V</i> /Å ³	4250.9(3)	4712.7(2)	25688.9(8)
Ζ	4	4	24
$\rho/\mathrm{g}~\mathrm{cm}^{-3}$	1.345	1.269	1.278
μ/mm ⁻¹	0.813	0.685	0.687
F(000)	1784.0	1880.0	10320.0
Crystal size/mm ³	0.218 $ imes$ 0.093 $ imes$	0.238 $ imes$ 0.158 $ imes$	0.131 × 0.127 ×
	0.089	0.138	0.113
2 <i>Θ</i> /°	5.44 to 52.738	3.394 to 52.744	3.178 to 52.744
Index ranges	$-25 \le h \le 25, -17 \le$	$-30 \le h \le 30, -21 \le$	$-35 \le h \le 35, -34 \le$
	$k \le 17, -19 \le l \le 19$	$k \le 21, -14 \le l \le 14$	$k \le 34, -40 \le l \le 40$
Reflections collected	30936	76821	281142
Independent reflections	8642 (0.1105,	9643 (0.0352,	26265 (0.1196,
$(R_{\rm int}, R_{\sigma})$	0.0922)	0.0170)	0.0532)
Data/restraints/parameters	8642/2/493	9643/131/601	26265/0/1493
GOF on F^2	1.006	1.043	1.024
$R_1 (I \ge 2\sigma (I))$	0.0480	0.0273	0.0427
wR_2 (all data)	0.0934	0.0724	0.0875
Largest diff. peak/hole /e	0.97/-0.78	0.50/-0.32	0.57/-0.42
Å-3			
Flack parameter	-0.012(14)	—	—

Table S1. Crystallographic data for the Sb(V)-dipyrrin complexes.

Figure S3. Molecular structure of LSbCl₂.

Figure S4. Molecular structure of LSbCl(OH)-acetone.

Major part (Cl, O: 95%, *t*Bu: 64%, acetone: 74%)

Minor part (Cl, O: 5%, *t*Bu: 36%, acetone: 26%)

Figure S5. Major and minor parts of LSbCl(OH)-acetone.

Figure S6. Molecular structures of LSb(OH)₂.

Selected bond lengths (Å) and angles (°) Sb1-O1 1.974(2), Sb1-O2 1.972(2), Sb1-N1 2.084(3), Sb1-N2 2.084(2), Sb1-O3 1.953(2), Sb1-O4 1.921(2), O3-Sb1-O4 178.6(1)

Molecule B

Selected bond lengths (Å) and angles (°) Sb2-O5 1.977(2), Sb2-O6 1.982(2), Sb2-N3 2.070(2), Sb2-N4 2.076(3), Sb2-O7 1.955(2), Sb2-O8 1.955(2), O7-Sb2-O8 176.7(1)

Molecule C

Selected bond lengths (Å) and angles (°) Sb3-O9 1.980(2), Sb3-O10 1.973(2), Sb3-N5 2.093(2), Sb3-N6 2.089(3), Sb3-O11 1.928(2), Sb3-O12 1.943(2), O11-Sb3-O12 178.5(1)

Figure S7. Independent molecules of LSb(OH)₂.

DFT calculations

Density functional theory (DFT) calculations were performed using the Gaussian 16 (revision C.02) program package.^{S4} CAM-B3LYP density functional with the 6-311G(d) and 6-311+G(d) basis sets were employed to the geometry optimizations and the time-dependent (TD)-DFT calculations. The M06 density functional was also employed for the TD-DFT calculations. Solvent effects were included by the IEFPCM method in the TD-DFT calculations. For the Sb atoms, the SDD basis set and pseudo potential was used. The optimized geometries were confirmed as the local energy minima by the frequency calculations. The computation was performed using Research Center for Computational Science, Okazaki, Japan (Project: 22-IMS-C164, and 23-IMS-C170, T.A.). Optimized geometries (in Å) of the Sb complexes are shown below.

L	.Sh	Cb	
	າວນ		

Sb	-0.00397	-0.2335	0.008611
Cl	0.363188	-0.2459	-2.36648
Cl	-0.37385	-0.1845	2.382954
0	1.314481	-1.63022	0.316957
0	-1.39336	-1.56788	-0.27176
Ν	1.477074	1.204203	0.153418
С	2.665803	-1.60303	0.201564
С	-2.74141	-1.46572	-0.1858
С	3.499961	2.158142	0.332597
Н	4.566917	2.2734	0.436581
С	-3.41307	-0.23003	-0.17053
С	3.3375	-2.84629	0.17679
С	-4.81922	-0.2188	-0.07697
Н	-5.31863	0.737292	-0.03272
С	3.399742	-0.4003	0.158172
С	4.796602	-0.46456	0.035585
Н	5.348417	0.463537	-0.03427
С	4.724003	-2.82805	0.066039
Н	5.239256	-3.77573	0.039574
С	-3.38393	2.330106	-0.33986
Н	-4.44359	2.499887	-0.44279
C	1.296983	2.589419	0.159848

С	0.118549	4.753626	0.003852
С	-4.85756	-2.58421	-0.0743
Н	-5.42844	-3.50208	-0.04462
С	0.082073	3.256142	-9.1E-05
С	-2.41045	3.296276	-0.29049
Н	-2.54408	4.367474	-0.33239
С	2.803166	0.929736	0.227131
N	-1.41141	1.274404	-0.16072
С	2.582562	-4.18033	0.294135
С	-0.20114	4.714486	2.521431
Н	-1.10363	4.095194	2.511458
Н	-0.28412	5.418447	3.352764
Н	0.638647	4.04392	2.728699
С	2.575214	3.172766	0.287012
Н	2.762252	4.235816	0.331287
С	-0.01699	5.447169	1.216223
С	5.485997	-1.65951	-0.01824
С	-5.56444	-1.37385	-0.02194
С	0.283461	5.447096	-1.20484
С	0.310778	6.839564	-1.17618
Н	0.434776	7.379552	-2.1115
С	-2.7494	1.066602	-0.23622
С	0.182732	7.554161	0.011757
С	0.016746	6.839593	1.195042
Н	-0.09172	7.379616	2.132267
С	3.52954	-5.38891	0.233179
Н	2.937257	-6.30465	0.322846
Н	4.256892	-5.39002	1.051495
Н	4.073214	-5.44266	-0.7158
С	-1.16206	2.649653	-0.16279
С	0.246726	9.05937	0.019752
Н	1.27766	9.408586	0.150131
Н	-0.34528	9.480064	0.837392
Н	-0.12316	9.479976	-0.91953
С	-3.47755	-2.67781	-0.15727

С	1.585791	-4.33439	-0.86813
Н	2.111288	-4.32388	-1.8291
Н	0.843327	-3.53947	-0.87671
Н	1.060695	-5.29215	-0.78249
С	-2.05529	-4.16718	-1.59502
Н	-2.77066	-4.11266	-2.42279
Н	-1.54122	-5.13249	-1.65828
Н	-1.3173	-3.37746	-1.73089
С	0.425679	4.714369	-2.51525
Н	1.290917	4.044023	-2.50927
Н	0.549856	5.418273	-3.34149
Н	-0.45138	4.095038	-2.72773
С	-2.78885	-4.04907	-0.24514
С	-1.81514	-4.23789	0.931736
Н	-1.03143	-3.48359	0.939296
Н	-1.3409	-5.22329	0.865888
Н	-2.35095	-4.18601	1.885645
С	7.013028	-1.66501	-0.1636
С	-3.79715	-5.20668	-0.17965
Н	-4.35557	-5.21728	0.762266
Н	-3.25156	-6.15278	-0.24696
Н	-4.51222	-5.18366	-1.00844
С	-7.50782	-2.1188	1.377234
Н	-7.1513	-3.15287	1.390419
Н	-8.59944	-2.14231	1.467148
Н	-7.10361	-1.61509	2.261021
С	1.859486	-4.24383	1.653368
Н	1.300713	-5.18254	1.736202
Н	1.161688	-3.41769	1.785156
Н	2.585709	-4.21197	2.472845
С	-7.09235	-1.38606	0.088821
С	-7.68078	0.029067	0.133479
Н	-7.31678	0.593848	0.997967
Н	-8.77088	-0.02782	0.212585
Н	-7.44579	0.596	-0.7734

С	7.646297	-0.91654	1.023029
Н	7.310494	0.123532	1.074072
Н	8.737964	-0.90875	0.93083
Н	7.387895	-1.3972	1.971913
С	-7.68994	-2.11521	-1.12811
Н	-7.41788	-1.60887	-2.05974
Н	-8.78308	-2.1385	-1.0592
Н	-7.33991	-3.14935	-1.19585
С	7.405669	-0.96336	-1.4762
Н	6.973304	-1.47867	-2.33965
Н	8.494943	-0.95526	-1.59386
Н	7.060786	0.07463	-1.5013
С	7.589364	-3.08593	-0.19198
Н	7.36988	-3.63376	0.730051
Н	8.677912	-3.03797	-0.29573
Н	7.203051	-3.66591	-1.03616

LSb(OH)₂

Sb	0.005148	-0.25586	-0.00399
0	-1.32744	-1.60072	-0.59199
0	1.409947	-1.53173	0.574241
Ν	-1.4703	1.194815	-0.22187
С	-2.65977	-1.60726	-0.35365
С	2.740808	-1.4608	0.346982
С	-3.48745	2.150674	-0.4829
Н	-4.55008	2.260071	-0.63321
С	3.408335	-0.22417	0.263892
С	-3.32862	-2.84871	-0.27005
С	4.803313	-0.20754	0.080289
Н	5.291317	0.751203	-0.01872
С	-3.39348	-0.40542	-0.26149
С	-4.78016	-0.46798	-0.06727
Н	-5.32474	0.461619	0.040412
С	-4.70952	-2.83353	-0.09387
Н	-5.22144	-3.78155	-0.03002

С	3.365842	2.333315	0.480614
Н	4.421262	2.49977	0.628847
С	-1.29287	2.577558	-0.22561
С	-0.12635	4.743116	-0.00203
С	4.851777	-2.57457	0.098887
Н	5.422337	-3.4912	0.033775
С	-0.08679	3.244998	-0.00071
С	2.391451	3.296975	0.404658
Н	2.519239	4.36832	0.460498
С	-2.79058	0.924155	-0.34061
Ν	1.402004	1.270005	0.223337
С	-2.56818	-4.18122	-0.36027
С	0.311314	4.71466	-2.50091
Н	1.209227	4.091103	-2.44675
Н	0.439005	5.42163	-3.32417
Н	-0.5208	4.049302	-2.75144
С	-2.56513	3.165611	-0.40703
Н	-2.74959	4.228554	-0.46443
С	0.064564	5.44244	-1.20343
С	-5.46708	-1.66506	0.016601
С	5.549668	-1.36286	-0.00182
С	-0.34967	5.433649	1.198836
С	-0.37895	6.82621	1.174019
Н	-0.54843	7.36262	2.104347
С	2.734772	1.069944	0.340626
С	-0.19657	7.545346	-0.0039
С	0.026844	6.8348	-1.17999
Н	0.178477	7.378013	-2.10945
С	-3.50069	-5.39505	-0.22853
Н	-2.90295	-6.30955	-0.29386
Н	-4.24678	-5.43411	-1.02894
Н	-4.02315	-5.41375	0.733363
С	1.151112	2.641977	0.224875
С	-0.26378	9.050531	-0.01005
Н	-1.28813	9.398459	-0.18764

Н	0.365253	9.475328	-0.79745
Н	0.060659	9.468857	0.94696
С	3.477999	-2.66876	0.26384
С	-1.54898	-4.26999	0.78975
Н	-2.06278	-4.24394	1.756785
Н	-0.83366	-3.44999	0.759347
Н	-0.99241	-5.21169	0.729167
С	2.088506	-4.20392	1.705582
Н	2.819689	-4.1527	2.51978
Н	1.594573	-5.18045	1.758784
Н	1.337641	-3.4321	1.868307
С	-0.55156	4.696418	2.498741
Н	-1.40993	4.019348	2.446541
Н	-0.72215	5.396977	3.319702
Н	0.319402	4.083654	2.751526
С	2.789416	-4.04003	0.343873
С	1.783282	-4.17898	-0.81276
Н	1.024032	-3.39945	-0.78377
Н	1.278659	-5.14987	-0.75903
Н	2.300719	-4.12113	-1.77646
С	-6.98574	-1.6697	0.232796
С	3.787599	-5.20044	0.212969
Н	4.316082	-5.18583	-0.74575
Н	3.240556	-6.14659	0.270521
Н	4.529561	-5.20214	1.018205
С	7.411574	-2.10981	-1.5094
Н	7.059317	-3.14536	-1.49544
Н	8.496164	-2.12934	-1.66386
Н	6.953281	-1.61299	-2.37042
С	-1.86686	-4.30202	-1.72629
Н	-1.32123	-5.2503	-1.78621
Н	-1.15984	-3.48996	-1.88982
Н	-2.60413	-4.28721	-2.53647
С	7.068675	-1.37107	-0.20316
С	7.649098	0.04543	-0.29031

Н	7.235847	0.602889	-1.13711
Н	8.733531	-0.0085	-0.42881
Н	7.461418	0.618336	0.623759
С	-7.67264	-0.91703	-0.92093
Н	-7.33638	0.122099	-0.98519
Н	-8.75893	-0.90663	-0.77801
Н	-7.46003	-1.39629	-1.8819
С	7.739962	-2.09106	0.980344
Н	7.522339	-1.57914	1.923234
Н	8.827296	-2.11265	0.847143
Н	7.396568	-3.12531	1.075323
С	-7.31758	-0.97152	1.563908
Н	-6.84673	-1.49029	2.404914
Н	-8.40042	-0.96212	1.731536
Н	-6.9697	0.065615	1.576321
С	-7.56254	-3.0898	0.28329
Н	-7.38173	-3.63655	-0.64778
Н	-8.64585	-3.04095	0.432514
Н	-7.14194	-3.67151	1.109719
0	-0.56227	-0.32059	1.840171
Н	0.01871	-0.93118	2.319084
0	0.576568	-0.27822	-1.84798
Н	0.026488	-0.9136	-2.33121

LSbCl(OH)

Sb	0.017745	-0.2757	-0.06969
Cl	-0.65164	-0.3075	2.249064
0	1.359703	-1.64811	0.48402
0	-1.421	-1.55897	-0.61785
Ν	1.485399	1.191103	0.202435
С	2.694419	-1.61245	0.271066
С	-2.75314	-1.46526	-0.38643
С	3.488942	2.154171	0.515854
Н	4.54704	2.269753	0.690018
С	-3.40895	-0.22045	-0.3574

C	2 276007	2 84408	0 147502
	3.370007	-2.04400	0.14/392
	-4.80484	-0.18985	-0.18154
H	-5.28907	0.773907	-0.12245
С	3.417593	-0.40007	0.254598
С	4.811571	-0.44543	0.101378
Н	5.352776	0.490814	0.053511
С	4.760213	-2.81013	0.014111
Н	5.28188	-3.75052	-0.07858
С	-3.34536	2.332381	-0.62304
Н	-4.39685	2.503713	-0.7922
С	1.298176	2.574288	0.204262
С	0.136311	4.736435	-0.04553
С	-4.86634	-2.5573	-0.10288
Н	-5.44251	-3.46711	-0.00268
С	0.098929	3.238299	-0.0532
С	-2.36798	3.293562	-0.52793
Н	-2.49136	4.365022	-0.5904
С	2.804349	0.922855	0.347393
N	-1.39285	1.265973	-0.3171
С	2.62122	-4.18273	0.1645
С	-0.37278	4.697164	2.440338
Н	-1.26294	4.065794	2.356926
Н	-0.5333	5.401171	3.260257
Н	0.456272	4.038612	2.717645
С	2.5645	3.164354	0.423042
Н	2.74334	4.227635	0.490626
С	-0.09082	5.430139	1.152945
С	5.510992	-1.63143	-0.01525
С	-5.55692	-1.33794	-0.05717
С	0.39276	5.431427	-1.23714
С	0.418376	6.82389	-1.20618
Н	0.613378	7.364237	-2.12916
С	-2.72594	1.068647	-0.45931
С	0.200676	7.538031	-0.03116
С	-0.05512	6.822635	1.135401

Н	-0.23459	7.362046	2.062054
С	3.562646	-5.38247	-0.02134
Н	2.969369	-6.30212	-0.01424
Н	4.2973	-5.46227	0.786498
Н	4.098685	-5.34543	-0.97544
С	-1.13558	2.636657	-0.31547
С	0.264479	9.043253	-0.01737
Н	1.282382	9.392218	0.192209
Н	-0.38863	9.46375	0.752499
Н	-0.03194	9.464598	-0.98207
С	-3.49234	-2.66602	-0.25701
С	1.609519	-4.22553	-0.99597
Н	2.130673	-4.17344	-1.95819
Н	0.899302	-3.40202	-0.94699
Н	1.046203	-5.16472	-0.96854
С	-2.13834	-4.26277	-1.6599
Н	-2.88469	-4.23563	-2.46143
Н	-1.6535	-5.2449	-1.68545
Н	-1.3831	-3.50539	-1.86648
С	0.634604	4.699545	-2.53331
Н	1.499155	4.032039	-2.462
Н	0.817814	5.40397	-3.34815
Н	-0.22284	4.077857	-2.80944
С	-2.80871	-4.04219	-0.29063
С	-1.77543	-4.14387	0.845983
Н	-1.00695	-3.37711	0.770762
Н	-1.28449	-5.12282	0.817424
Н	-2.26483	-4.04058	1.820083
С	7.035963	-1.61489	-0.1812
С	-3.81054	-5.18963	-0.09142
Н	-4.32463	-5.12608	0.873088
Н	-3.26858	-6.14007	-0.1114
Н	-4.5639	-5.22665	-0.88521
С	-7.43	-2.01131	1.470352
Н	-7.08457	-3.04872	1.50121

Н	-8.51536	-2.01749	1.619875
Н	-6.97261	-1.48217	2.312308
С	1.914514	-4.37054	1.520666
Н	1.36628	-5.31936	1.528389
Н	1.212186	-3.5649	1.730165
Н	2.65087	-4.40271	2.331077
С	-7.07701	-1.32948	0.136142
С	-7.65013	0.092441	0.160815
Н	-7.23931	0.682426	0.986491
Н	-8.73554	0.049591	0.294855
Н	-7.45445	0.625973	-0.77518
С	7.677795	-0.9116	1.028273
Н	7.331189	0.121253	1.128934
Н	8.768065	-0.88738	0.922369
Н	7.437269	-1.4359	1.958576
С	-7.74542	-2.09489	-1.02021
Н	-7.52018	-1.62408	-1.98255
Н	-8.83344	-2.1049	-0.89208
Н	-7.40762	-3.13412	-1.06983
С	7.405361	-0.85371	-1.46711
Н	6.966756	-1.33613	-2.34633
Н	8.492966	-0.82931	-1.59809
Н	7.049867	0.180705	-1.44334
С	7.626196	-3.02711	-0.27764
Н	7.419282	-3.61756	0.620687
Н	8.71338	-2.96361	-0.38786
Н	7.238566	-3.57298	-1.14371
0	0.569279	-0.31573	-1.95613
Н	-0.01604	-0.92026	-2.43851

	LSbCl ₂	LSb(OH) ₂	LSbCl(OH)
Sb-X (Å)	2.403, 2.403	1.931, 1.931	2.413 (Cl), 1.966
			(OH)
Sb-N (Å)	2.070, 2.069	2.081, 2.081	2.104, 2.096
Sb-O (Å)	1.947, 1.945	1.982, 1.984	2.004, 1.997
X-Sb-X (°)	179.12	177.41	178.07
$\lambda_{\max} \ (nm)^a$	523	505	509
Oscillator strength ^a	0.5446	0.6071	0.5620
$\lambda_{\max} (nm)^{b}$	536	521	525
Oscillator strength ^b	0.6993	0.7641	0.7194
$\lambda_{\max} (nm)^c$	570	551	556
Oscillator strength ^c	0.5928	0.6817	0.6110
S ₁	HOMO-LUMO	HOMO-LUMO	HOMO-LUMO

Table S2. Summary of the DFT calculation data

^a CAM-B3LYP in vacuum. ^b CAM-B3LYP in CHCl₃. ^c M06 in CHCl₃.

Figure S8. HOMO and LUMO of LSbCl₂

HOMO (-6.51 eV)

Figure S9. HOMO and LUMO of LSb(OH)₂

HOMO (-6.36 eV)

LUMO (-1.84 eV)

Figure S10. HOMO and LUMO of LSbCl(OH)

PLQY measurement

Photo-luminescence quantum yields (PLQYs) were determined by an absolute fluorescence quantum yield method with a Hamamatsu Photonics absolute PL quantum yield measurement system C9920-02 (λ_{ex} 300 nm).

Figure S11. PL spectra of the Sb complexes and LH_3 measured by the PLQY measurement system.

References

S1 K. Nakano, K. Kobayashi and K. Nozaki, J. Am. Chem. Soc., 2011, 133, 10720-10723.

- S2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- S3 (a) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8
- S4 Gaussian 16, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

¹H and ¹³C NMR spectra and HRMS data of newly synthesized compounds LHMe₂

¹H NMR (400 MHz, CDCl₃)

HRMS (APCI-pos, solvent: acetone)

LH₃ ¹H NMR (400 MHz, CDCl₃)

HRMS (APCI-pos, solvent: acetone)

LSbCl₂

¹H NMR (400 MHz, CDCl₃)

*Signals corresponding to silicone grease and water.

HRMS (APCI-pos, solvent: acetone)

LSbCl(OH)

¹H NMR (400 MHz, CDCl₃)

*Signals corresponding to silicone grease and dioctyl phthalate.

<HRMS (APCI-pos in Acetone)>

LSb(OH)₂

¹H NMR (400 MHz, CDCl₃)

*Signals corresponding to silicone grease and water.

HRMS (ESI-neg, solvent: CH₃OH)

